Supporting Information for

Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence

switching for alkaline phosphatase detection

Kun Ye,^a Linjie Wang,^a Hongwei Song,^b Xin Li,^a Xiangheng Niu^{a,*}

^a Institute of Green Chemistry and Chemical Technology, School of Chemistry and

Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

^b School of Environmental and Chemical Engineering, Jiangsu University of Science

and Technology, Zhenjiang 212003, China

* Corresponding author. E-mail: niuxiangheng@126.com

Figure S1. Fluorescence spectra of TA and $TA+H_2O_2$.

Figure S2. EPR spectrum of the MIL-53(Fe)+ H_2O_2 +DMPO system.

Figure S3. Fluorescence spectra of the MIL-53(Fe)+ H_2O_2 system with different

concentrations of H_2O_2 .

Figure S4. Fluorescence intensity of the MIL-53(Fe)+ H_2O_2 system upon reaction time.

Figure S5. Effect of buffer pH on the fluorescence intensity of the MIL-53(Fe)+ H_2O_2 system.

Figure S6. Robustness of the synthesized MIL-53(Fe) against harsh pH. The material was first treated by incubating it in 0.1 M buffers with different pH for 2 h, and then its oxidation-stimulated fluorescence was measured under standard conditions.

Figure S7. Robustness of the synthesized MIL-53(Fe) against harsh temperature. The material was first treated by incubating it at different temperatures for 2 h, and then its oxidation-stimulated fluorescence was measured under standard conditions.

Figure S8. SEM image of the PPi-capped MIL-53(Fe).

Figure S9. Comparison of XRD patterns of MIL-53(Fe) and PPi-capped MIL-53(Fe).

Figure S10. Comparison of FTIR spectra of MIL-53(Fe) and PPi-capped MIL-53(Fe).

Figure S11. Effect of PPi concentration on the inhibition of the MIL-53(Fe)+ H_2O_2 system.

Principle	Linear range (U L ⁻¹)	LOD (U L ⁻¹)	Detection time (min)	Ref.
PPi-triggered competitive				
displacement of fluorescein-	2~100	0.18	30~40	1
labeled DNA from MVCM				
Copper-mediated DNA-				
sca□olded silver nanocluster	30~240	5	130~140	2
switching				
Inhibition of DNA-templated	0.3~7.5	0.3	70~80	3
copper nanoparticles by PPi				
Quenching and restoration of	2.5~40	1	120~130	4
the fluorescence of CDs				
PPi-mediated regulation of the	16.7~782.6	1.1	30~40	5
fluorescence of CQDs				
Inhibition of DNA-templated	0.1~250	0.078	85~95	6
silver nanoclusters by PPi				
Bifunctional MIL-53(Fe) with				
PPi-mediated peroxidase-like				T1.:-
activity and oxidation-	2~80	0.7	110~120	1 mis
stimulated fluorescence				WORK
switching				

Table S1. Performance comparison of our method with previous PPi-basedfluorescent approaches for ALP detection.

References

- 1. C. H. Wang, G. E. Tang and H. L. Tan, J. Mater. Chem. B, 2018, 6, 7614-7620.
- 2. J. L. Ma, B. C. Yin, X. Wu and B. C. Ye, Anal. Chem., 2016, 88, 9219-9225.
- 3. L. L. Zhang, J. J. Zhao, M. Duan, H. Zhang, J. H. Jiang and R. Q. Yu, Anal.

Chem., 2013, 85, 3797-3801.

- W. J. Kang, Y. Y. Ding, H. Zhou, Q. Y. Liao, X. Yang, Y. G. Yang, J. S. Jiang and M. H. Yang, *Microchim. Acta*, 2015, **182**, 1161-1167.
- 5. Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. J. Shen, J. R. Chen and H. Feng, *Biosens. Bioelectron.*, 2015, **68**, 675-680.
- 6. L. Y. Guo, D. L. Chen, M. H. Yang, *Microchim. Acta*, 2017, **184**, 2165-2170.