Supporting Information

One-step sensitive thrombin detection based on a nanofibrous

sensing platform

Xiaoling Li[†], Yuyang Wu[†], Jingjing Niu[†], Dagang Jiang[†], Dan Xiao[†], Cuisong Zhou[†]*

[†]College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

Contents:

1. Native PAGE analysis of CHA amplification process (Fig. S1)

2. The fluorescence responses of the nanofibrous membranes (Fig. S2)

3. Optimization of detection system (Fig. S3)

4. Comparison of multistep or one-step enzyme-free thrombin detection approaches (Table S1)

Native PAGE analysis of CHA amplification process

Fig. S1 Native PAGE analysis of CHA amplification. Lane 1: H1; Lane 2: H2; Lane 3: the mixture of H1 and H2; Lane 4: the mixture of H1, H2 and O; Lane 5: anneal of H1 and H2. The concentration of H1, H2 and O are 500 nM, 500 nM and 50 nM, respectively. The reaction time is 100 min at 25 °C.

The fluorescence responses of the nanofibrous membranes

Fig. S2 The fluorescence responses of the nanofibrous membranes with (A) no-washing and (B) washing. The concentration of thrombin was 10 nM.

Optimization of detection system

Fig. S3 Effects of various conditions on the signal-to-backgroud response of the nanofibrous membrane. (A) the concentration of H1, (B) the concentration of ThT, (C) reaction time and (D) dyeing time. F and F₀ refer to the response fluorescence intensity of 10 nM thrombin and 0 nM thrombin, respectively.

Comparison of multistep with one-step enzyme-free thrombin detection approaches

detection step	sensing interface	analytical method	detection time	linear range	detection limit	ref
multistep	magnetic electrode	ECL	14 h	1.0 pM - 5.0 nM	0.12 pM	42
multistep	gold electrode	electrochemistry	120 min	10 pM – 50 nM	5.6 pM	5
multistep	gold electrode	electrochemistry	90 min	2 pM –20 nM	0.76 pM	43
multistep	PS-PSMA nanofibers	fluorescence	90 min	100 pM – 50 nM	10 pM	14
multistep	PSMA nanofibers	fluorescence	60 min	50 pM – 20 nM	42 pM	15
multistep	solution	colorimetric	7 h	2.5 pM – 2.5 nM	1.9 pM	7
one step	solution	FRET	40 min	0.05 pM - 200 pM	0.05 pM	24
one step	solution	fluorescence	35 min	2 nM – 20 nM	2.0 nM	44
one step	solution	FCCS	30 min	_	0.8 nM	22
one step	solution	fluorescence	30 min	0.3 nM – 11.1 nM	97 pM	23
one step	PS nanofibers	fluorescence	100 min	50 pM – 5 nM	1.0 pM	this work

Table S1 Comparison of multistep with one-step enzyme-free thrombin detection approaches

PS, PSMA, ECL, FRET and FCCS refers to polystyrene, poly(styrene-co-maleic acid), electrochemiluminescence, fluorescence resonance energy transferand and fluorescence crosscorrelation spectroscopy, respectively.