

1 **A mimotope peptide-based dual-signal readout competitive enzyme-**
2 **linked immunoassay for non-toxic detection of Zearalenone**

3 Yanjie Chen^a, Shupei Zhang^b, Zhensheng Hong^a, Yanyu Lin^c, Hong Dai^{a,b*}

4 a College of Chemistry and Materials, Fujian Normal University, Fuzhou 350108, P.

5 R. China

6 b Fujian Provincial Maternity and Children's Hospital, Fuzhou, Fujian, 350108, China

7 c Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, and

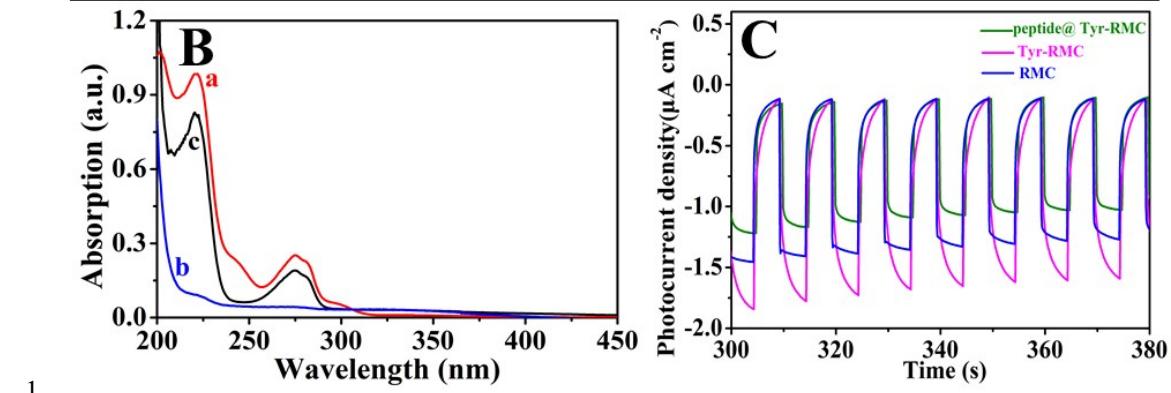
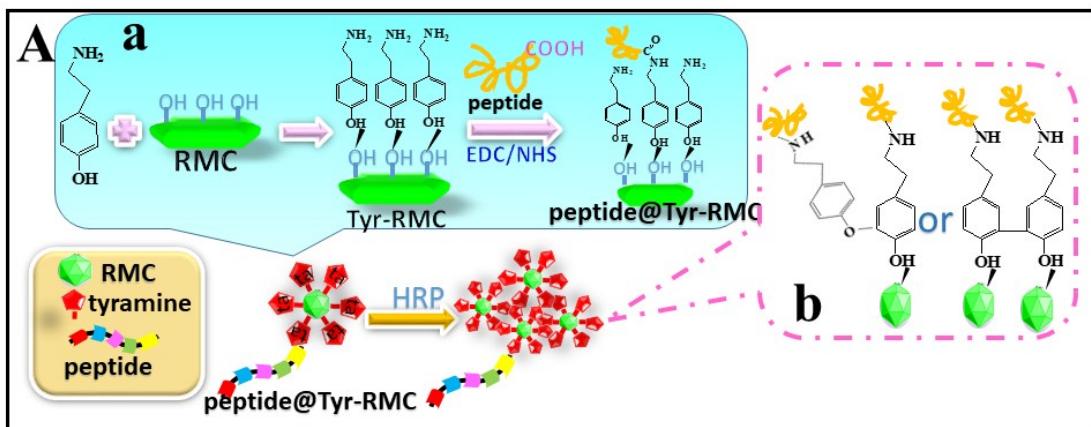
8 Department of Chemistry, Fuzhou University, Fuzhou 350002, P. R. China

9

Corresponding author: Fax: (+86)-591-22866135; E-mail: dhong@fjnu.edu.cn (H. Dai);

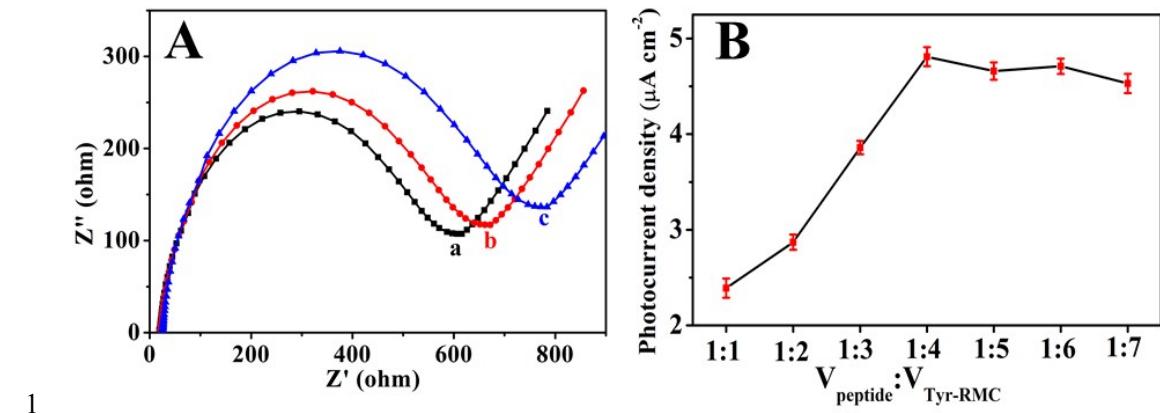
1 **Table S1**

2 Recovery measurements of ZEN in soy sauce (n=3)



Smple	Found	Add	Total found	Recovery
	(ng/mL)	(ng/mL)	(ng/mL)	(%)
1	0.0549	blank	0.0549	
2	0.0549	0.1	0.1542	99.3
3	0.0549	0.01	0.0654	104.7
4	0.0549	0.001	0.05595	105.1

3

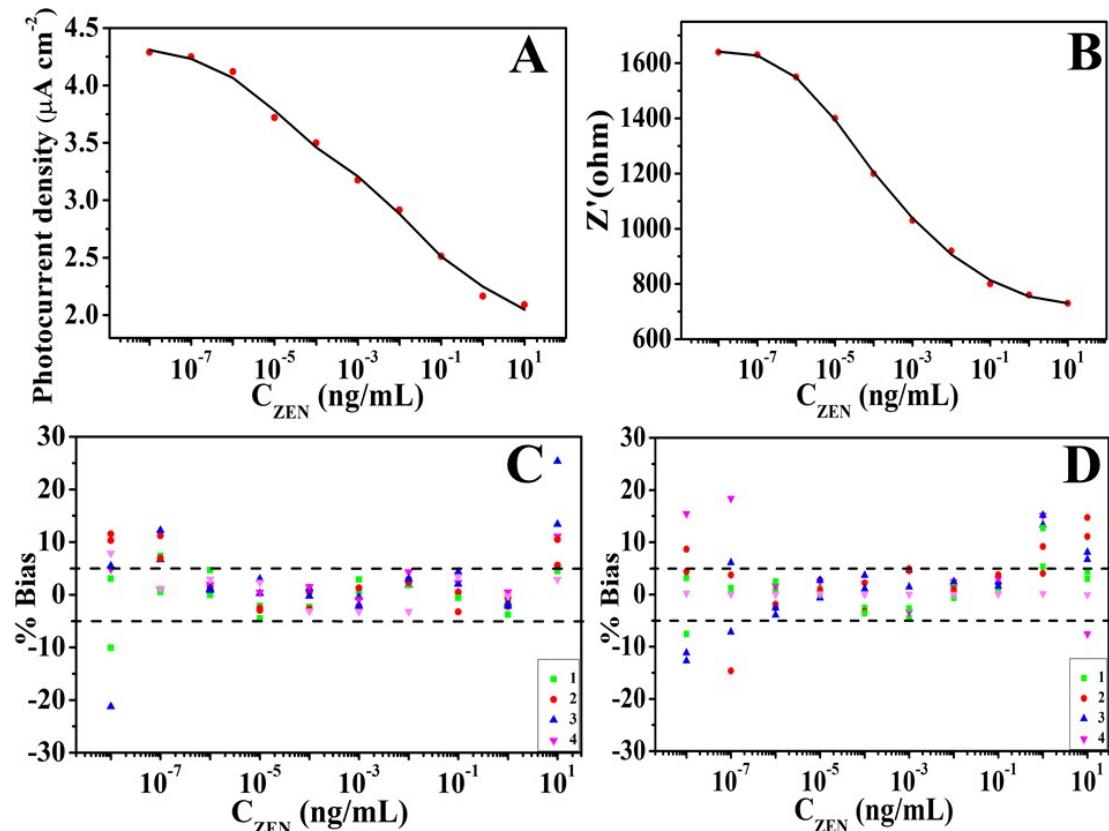
4


1 Synthesis of Au nanocones

2 In order to harvest pure Au nanocones (Au NCs), we took Li's work as reference with
3 some minor modifications.²⁴ In particular, 250 μ L of 0.01M HAuCl₄ solution and 250
4 μ L of 0.01M H₂PtCl₆ solution were mixed together at room temperature and added to
5 20 mL 0.1 M CTAB solution under stirring. Next, 2 mL new prepared NaBH₄ ice-cold
6 solution (0.01M) was injected into the mixture slowly and shook for 5 min followed by
7 keeping in an oven at 35 °C for 5 h to acquire the seed solution. Besides, a mixture
8 composed of 3.5 mL HAuCl₄ (0.01M), 150 μ L H₂PtCl₆ (0.01M), 800 μ L AgNO₃
9 (0.01M) and 1600 μ L HCl (1M) was added into 80mL of 0.1 M CTAB solution and
10 vigorously stirred for 5 min to get uniform solution. After that, 640 μ L of 0.1 M ascorbic
11 acid (AA) solution was injected into the mixed solution under stirring to have a reduce
12 reaction. When the mixed solution changed to colorless, the seed solution prepared
13 above was added immediately and vigorously stirred for 5 min. After that, the mixture
14 was put into oven to have a constant temperature reaction at 35 °C for 12 hours. The Au
15 NCs solution was purified just by centrifuging (6000 r/min, 10 min) to remove the solid
16 from the supernatant. Finally, the prepared Au NCs was functionalized with 1mg mL⁻¹
17 MEA under volume ratio of 1:3 and stirred for 6 h. The MEA could connected to Au
18 NCs via formation of Au-S bond.

1 **Figure S1** (A) The illustration of the construction process of peptide@Tyr-RMC. (B)
 2 Absorbance spectra of tyramine (a), RMC (b), ta-RMC (c). (C) Photocurrent density
 3 measurement on different modified electrode RMC (blue line), Tyr-RMC (magenta
 4 line) and peptide@Tyr-RMC (green line) in PBS (pH 7.0) with applied potential of
 5 0.2V.
 6 Fig. S1A (a) described the construction process of peptide@Tyr-RMC. The oxygen
 7 vacancies in RMC trended to capture H_2O molecules and H_2O molecules dissociated
 8 into OH and H fragments, thereby caused formation of Ti-OH on RMC surface. In this
 9 case, hydroxyl in tyramine was prior to connect onto RMC surface via hydrogen bond
 10 between hydroxyl and Ti-OH.³² After introduction of ZMP, the mimotope peptide
 11 connected to Tyr-RMC via classic EDC/NHS coupling reaction between amine (-NH₂)
 12 groups on tyramine and carboxyl (-COOH) group of peptide.^{33,34} As for Fig. S1A (b)
 13 groups on tyramine and carboxyl (-COOH) group of peptide.^{33,34} As for Fig. S1A (b)

1 described the signal amplification mechanism of peptide@Tyr-RMC composite.
2 Subjecting to catalytic of HRP, ta-RMC composite depose at the site of enzyme reaction
3 through either a C–C linkage between the other-carbons of the aromatic ring or a C–O
4 linkage between the ortho-carbon and the phenolic oxygen³⁶⁻³⁸. To verify the successful
5 preparation of Tyr-RMC composite optical properties of obtained pure and doped
6 systems were recorded by ultraviolet-visible absorption spectra (UV-vis) in Fig. S1B.
7 As exhibited in Fig. S1B, the unmodified RMC (b) did not show apparent UV light
8 absorption in wavelength range from 200 nm to 450 nm because of its wide band gap^{S1}.
9 While pure tyramine (a) indicated an evident absorption peak at 225 nm and 275 nm,
10 which was correspond to previous reports³⁸. After modifying RMC with tyramine, the
11 Tyr-RMC composite (c) showed the characteristic absorption peaks of both 225 nm and
12 275 nm, indicating that tyramine have successfully coated on the RMC surface. To
13 further verified that the peptide@Tyr-RMC composite (green line) was successfully
14 synthesized, the photocurrent response on different composite modified electrode were
15 evaluated in Fig. S1C. Comparing with unmodified RMC (blue line), the Tyr-RMC
16 composite (magenta line) presented increasing photocurrent response owing to self-
17 oxidation of tyramine suppressed the recombination of electron-hole pairs in RMC.
18 Whereas as peptide@Tyr-RMC composite anchored onto the electrode, the
19 photocurrent response decreased for insulated protein complex inhibited the electron
20 transfer. Based on these discussions we can infer that the peptide@Tyr-RMC probe has
21 successfully fabricated.

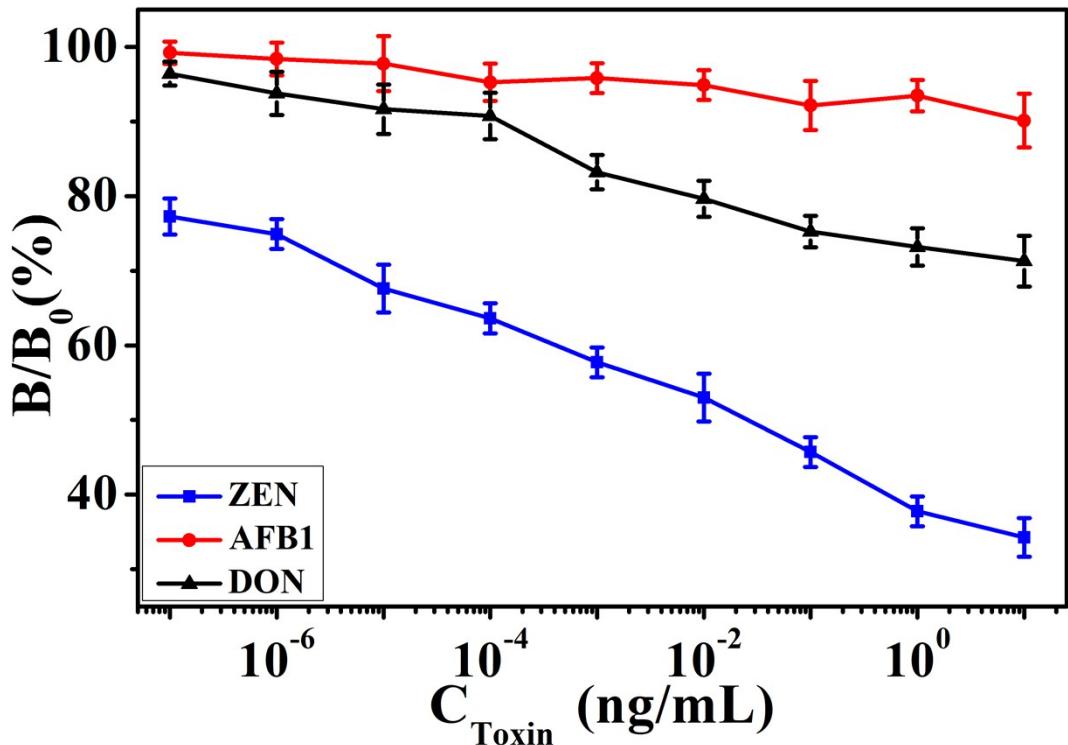


1 **Figure S2** (A) EIS and measurement on different modified electrode (a) GCE/CNHs/
2 Au NCs/poly (Gly)/Ab, (b) GCE/CNH/Au NCs/poly (Gly)/Ab/peptide, (c)
3 GCE/CNH/Au NCs/poly (Gly)/Ab/peptide@Tyr-RMC (B) Photocurrent response on
4 GCE/CNH/Au NCs/poly (Gly)/Ab/peptide@Tyr-RMC under different volume ratio
5 between peptide and Tyr-RMC
6 As illustrated in Fig.S2A, the electrochemical impedance on GCE/CNH/Au NCs/poly
7 (Gly)/Ab/mimotope peptide (curve b) was evidently larger than that on GCE/CNH/Au
8 NCs/poly (Gly)/Ab (curve a), implying that an immune recognition reaction took place
9 between mimotope peptide and antibody. After peptide@Tyr-RMC immobilized on
10 GCE/CNH/Au NCs/poly (Gly)/Ab electrode, electrochemical impedance on
11 GCE/CNH/Au NCs/poly (Gly)/Ab/peptide@Tyr-RMC (curve c) was remarkably
12 increased comparing to curve **a** and **b**. Therefore, we drew a conclusion that the
13 peptide@Tyr-RMC could still recognize the antibody on GCE/CNH/Au NCs/poly
14 (Gly)/Ab electrode even though Tyr-RMC attached, which also indicated that the Tyr-
15 RMC as a report unit played an important role in signal amplification. To specially
16 explore the interaction between antibody and peptide@Tyr-RMC, Fig. S2B presented
17 the photocurrent response on GCE/CNH/Au NCs/ poly (Gly)/Ab electrode after

1 incubating with peptide@Tyr-RMC probe with different volume ratio between
2 mimotope peptide and Tyr-RMC. The photocurrent density increased hugely with
3 increased ratio of Tyr-RMC in the range from 1:1 to 1:4 and the maximum photocurrent
4 density value appeared at ratio of 1:4, whereas the photocurrent tended to level off and
5 decline after 1:4. For one thing, the adsorption between Tyr-RMC and mimotope
6 peptide was saturated. For another, RMC aggregated at excess volume ratio and part of
7 mimotope peptide was coated by Tyr-RMC, which inhibited the interaction with
8 antibody on electrode interface. Therefore, 1:4 was finally selected as the optimal
9 volume ratio between mimotope peptide and Tyr-RMC.

10

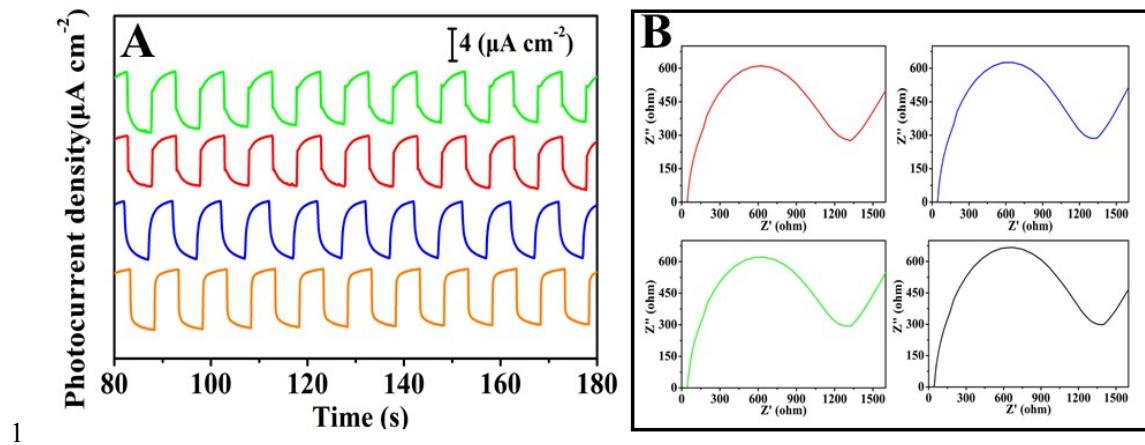
11


1 **Figure S3** LBA curves of photocurrent response (A) and electrochemical impedance
2 measurement (B) for different concentration of ZEN after treating with 0.5 mg mL^{-1}
3 HRP. %Bias plots for photocurrent response (C) and electrochemical impedance
4 measurement (D) by preparing four independent sets of mock standards to have two
5 analysts prepare two sets each
6
7 Considering that this is a competitive assay, the instrument response was inversely
8 related to the analyte concentration in ligand binding assay (LBA).³⁵ While the non-
9 linear nature of an LBA curve limits the concentration response correlation at the upper
10 and lower ends of the curve, resulting in plateaus and therefore an S-shaped curve, as
11 presented in Fig. S3 A and B. In this case, the concentration-response relationship of
12 these calibrator standards established the calibration curve of the assay. The % bias
13 plots was practical approach to establish the quantitation range and to judge the
14 usefulness of auxiliary points. As illustrated in Fig. S3 C and D, four independent sets
15 of mock standards was prepared to have two analysts prepare two sets each and each

1 set of mock standards was added to an assay plate in duplicate wells. The %bias used
2 in the example was as follows:

$$3 \quad \%Bias = \frac{Determined\ Concentration - Normal\ concentration}{Normal\ concentration} \times 100\%$$

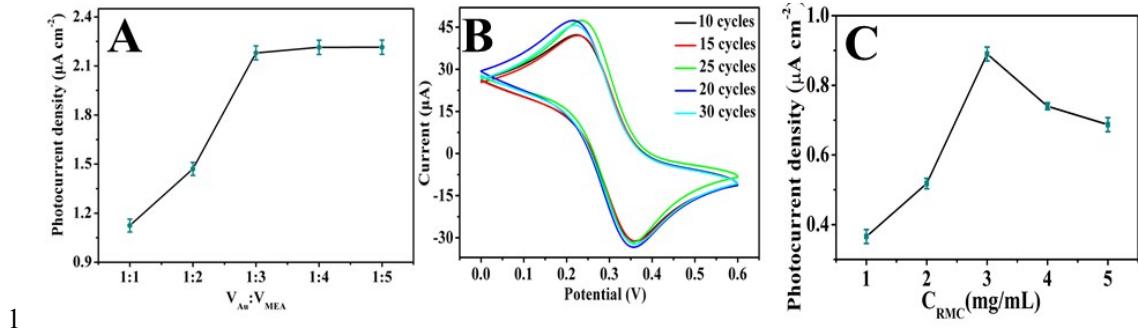
4 According to guidance, bias of up to 25% at the LLOQ level was acceptable. While
5 to pursue a tighter bias acceptance standards with bias less than 5% seem to make a
6 suitable quantification range in the example provided here. The % bias plots in Fig.
7 S2C and D indicated that the quantification range (LLOQ to ULOQ) for
8 photocurrent and electrochemical impedance measurement should be 10^{-6} to 1
9 ng/mL and 10^{-6} to 10^{-1} ng/mL respectively. Based on this, the S-shaped curves in
10 Fig. S2A and B were fitted into standard curves in effective liner range as presented
11 in Fig.4B and D. The linear regression equation of two curves were expressed as
12 Photocurrent density ($\mu\text{A cm}^{-2}$) = $-0.318 \log C_{ZEN}$ (ng/mL) + 1.99 ($R^2 = 0.9987$)
13 and Z' (ohm) = $-152.93 \log C_{ZEN}$ (ng/mL) + 620.30 ($R^2 = 0.9911$) respectively.
14 And loss of linearity indicated that the assay has reached its limits of the detection,
15 thus, the detection limit for the designed biosensor was 10^{-6} ng/mL.


16

1 **Figure S 4** The competitive inhibition curves of competitive ELISA with ZEN, AFB1
 2 and DON from 10^{-7} ng/mL to 10 ng/mL.
 3
 4 To further test the specify of designed immunoassay, the competitive inhibition curves
 5 of ZEN, AFB1 and DON were established in Fig. S4. The B_0 was the binding signal
 6 when competitive antigen concentration was 0 ng/mL and B was the binding signal
 7 when the competitive antigen at other concentrations. The half maximal (50%)
 8 inhibitory concentrations (IC50) represented the concentration of an inhibitor with 50%
 9 inhibition ratio (B/B_0) of antibody. In common, a lower IC50 implied a better specified
 10 ability of antibody. The half maximal (50%) inhibitory concentrations (IC50) of ZEN
 11 was calculated to be 0.0144 ng/mL. And IC50 of AFB1 and DON were both greater
 12 than the highest concentration in standard curve (1 ng/ mL). Furthermore, IC50 of DON
 13 seems to be lower than of AFB1, implying the ZEN antibody demonstrated a relative
 14 lower specify ability to DON compare to AFB1⁴⁰. This conclusion can well explain the

1 phenomenon in Fig. 5A and C.

2


1 **Figure S5** The reproducibility of PEC biosensor was evaluated by determining
2 photocurrent response in four electrodes (GCE/CNH/Au NCs/poly (Gly)/Ab/
3 peptide@ta-RMC /HRP-H₂O₂) under chopped light illumination with applied potential
4 of 0.2V in PBS (pH 7.0) (A). And EIS in four electrodes (GCE/CNH/Au NCs/poly
5 (Gly)/Ab/peptide@ta-RMC/HRP-H₂O₂) in mixed solution of 5.0 mM K₃
6 [Fe(CN)₆]/K₄[Fe(CN)₆] (1:1) contained 0.5 M KCl with applied potential of 0.199V
7 8 (B).

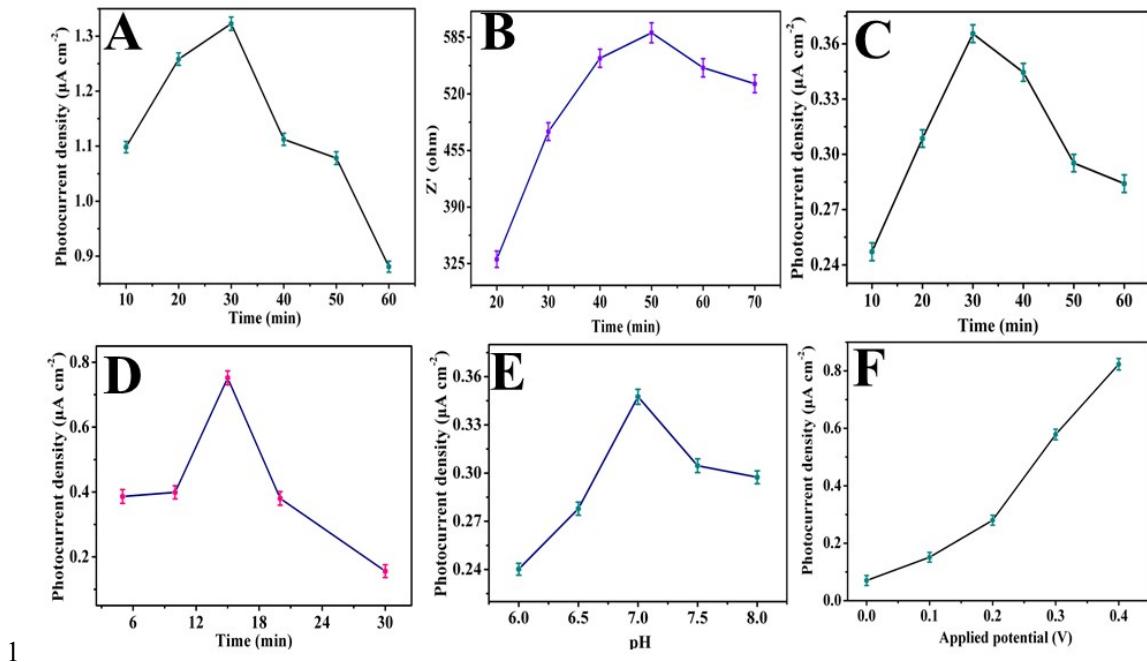
9

10

11

12

1 **Figure S6** effect of (A) volume ratio between Au CNs and MEA, (B) different
2 3 electrochemical polymerization cycle of Glycine on electrode interface, (C) different
3 4 concentration of RMC, (D) volume ratio between peptide and Tyr-RMC.


5 The influence of volume ratio between Au NCs and MEA was analyzed in Fig. S6A,
6 the Au NCs was compound with MEA under the volume ratio of 1:1, 1:2, 1:3, 1:4 and
7 1:5 respectively, with increasing volume ratio, the photocurrent enhanced rapidly and
8 level off at 1:3. After that, more MEA absorbed on the surface of Au NCs via Au-S
9 bond, the steric hindrance generated by MEA was the dominant factor and no obvious
10 change of photocurrent exhibit. Thus 1:3 was finally selected as the optional volume
11 ratio between Au NCs and MEA. Fig. 6B depicted the influence of the cyclic
12 voltammetry to get optimal cycles of Glycine. The cycles were measured for 10, 15,
13 20, 25 and 30 respectively, and highest photocurrent response was emerged at 25
14 cycles, suggesting that the modified electrode have good electrochemical conductivity.

15 Whereas, a slight reduction of peak photocurrent appeared at 30 cycles, thus, this
16 phenomenon proved 25 cycles was the most compatible cycles. As for Fig. S6C, it can
17 be found that the photocurrent increased rapidly with the concentration of RMC, while
18 as RMC concentration exceeds 3mg/mL, the photocurrent showed downward trend

1 gradually for excess RMC on electrode suppressed. Thus, 3mg/mL RMC was selected
2 as the optimal concentration for immunoassay.

3

4

2 **Figure S7** The effect of different (A) the absorption time between RMC and tyramine,
3 (B) ZEN-MAb incubate time, (C) competitive reaction time between target free ZEN
4 and peptide@Tyr-RMC conjugate, (D) HRP catalysis time (2 Mm H_2O_2 solution). (E)
5 pH and (F) applied potential during the PEC measurement.

6 Fig. S7A evaluated the optimal absorption time between RMC and tyramine, owing to
7 the self-oxidation of tyramine, the electron–hole recombination in RMC was
8 suppressed which promote electron transfer efficiently. The photocurrent decreased
9 when absorption time exceed 30 min due to the increased amount of tyramine hindered
10 the transfer of electrons on the electrode interface. Therefore, the optimal response was
11 obtained at 30 min. As Fig. S7B exhibited, the impedance increased with increasing
12 ZEN-MAb incubation time and reached top at 50 min. The impedance decreased
13 gradually when the incubation time was prolonged, which can be ascribed to the
14 approximately saturated reaction between ZEN-MAb and poly(Gly). And the
15 photocurrent output was mainly dependent capture amount of peptide@Tyr-RMC

1 conjugate on electrode, thus, the competitive reaction time between target free ZEN
2 and peptide@Tyr-RMC conjugate was explored in Fig. S7C, the photocurrent response
3 enhanced sharply from 10 to 30 min, and decreased when the time exceed 30 min for
4 more insulated protein complex hindered the electron migration seriously. Fig. 7D
5 presented the effect of HRP catalysis time on the photocurrent response after the
6 electrode interface has been captured by peptide@Tyr-RMC conjugate in 2 mM H₂O₂
7 solution. The photocurrent response increased gradually from 6 to 15 min and decreased
8 when further prolonging the catalysis time. There are mainly two factors: (i)
9 aggregation of the Tyr-RMC conjugate made more electron-hole recombination (ii)
10 with the increase of film thickness, the internal resistances increase, which led to
11 decrease of photocurrent. The effect of pH variation on the photocurrent response was
12 investigated in the range of 6-8. As exhibited in Figure S7E, the photocurrent density
13 elevated rapidly and reached maximum at pH=7.0 and then decreased with increasing
14 of the pH. Thus, pH 7.0 was selected as the optimum pH in the subsequent
15 measurements. Besides, Figure S7F investigated the effect of applied potential on the
16 photoelectrochemical response toward the detection of the ZEN from 0.0-0.4V, with
17 the increase of positive potential, the photocurrent increased sharply resulting from the
18 lower electron-transfer energy barrier. However, in order to avoid oxidation of
19 substrate in high positive potential, 0.2 V was selected as the applied potential during
20 the determination progress.

21

- 1 S1 Y.M. Lin, Y. L. Su, Y. H. Zhu, Z. Y. Jiang, H.L. Shi, X. Ding, X. D. Zhang, H. Y.
- 2 Zhu, R. Q. Zhang, Computational Materials Science., 2017,131,178.