Supplementary Information

Physicochemical stimuli as a tuning parameter to modulate the structure, stability and release kinetics of dapsone encapsulated nanostructured lipid carriers

> Rohini Kanwar,¹ Michael Gradzielski,² Sylvain Prevost,³* Gurpreet Kaur,¹ Marie-Sousai Appavou⁴ and S.K. Mehta¹*

SANS EQUATIONS

Based on earlier models,¹ the population of large scatterers was modeled as polydisperse homogeneous spheres with a log-normally distributed radius and the population of small scatterers as core-shell monodisperse triaxial ellipsoids.

The intensity for polydisperse homogeneous spheres (I_{sphere}) and $K(Q, R, \Delta SLD)$ with radius R and Δ SLD is given by

$$I_{Sphere}(Q, R) = {}^{1}N_{sph} \cdot \langle (V_{sph} \cdot \Delta SLD)^{2} \rangle \cdot P(Q) \cdot S(Q)$$
(S1)

where ${}^{1}N, < V_{sph}.\Delta SLD >$, P(Q) and S(Q) are the number density of scattering particles, mean average of volume and scattering contrast multiplication factor, form factor and structure factor. For triaxial ellipsoidal core shell micelles, I_{ii} (Q, R, ν) with a radius of rotation axis 'R' is given by:

$$I_{triaxEllSh}(Q) = \int_{0}^{1} \int_{0}^{1} dx \, dy \, K_{sh}^{2}(Q, R, R_{t})$$
(S2)

$$K(QR) = 3 \frac{\sin QR - QR \cos QR}{QR^3}$$
(S3)

$$K_{sh}(Q, R, R_t) = (\eta_c - \eta_{sh}) K(QR) + (\eta_{sh} - \eta_{sol}) K(QR_t)$$
(S4)

$$R^{2} = \left[a^{2}cos^{2}\left(\frac{\pi x}{2}\right) + b^{2}sin^{2}\left(\frac{\pi x}{2}\right)\right](1 - y^{2}) + c^{2}y^{2}$$
(S5)

$$R_t^2 = \left[(a+t)^2 \cos^2\left(\frac{\pi x}{2}\right) + (b+t)^2 \sin^2\left(\frac{\pi x}{2}\right) \right] (1-y^2) + (c+t)^2 y^2$$
(S6)

$$V_c = \frac{4}{3}\pi abc \tag{S7}$$

$$V_t = \frac{4}{3}\pi(a+t)(b+t)(c+t)$$
(S8)

where η_c , η_{sh} , η_{sol} are scattering length density of core, shell, and solvent, respectively. a, b, c, are the semi-axes of the elliptical core, t is the thickness of the shell. V_c and V_t are the volumes of core and total volume of the core along with the shell.

KINETIC EQUATIONS

$F = k_0 t$	(S9)
	$F = k_0 t$

$F = k_H \cdot t^{1/2}$	(S10)
$F = F_0 - be^{-kt}$	(S11)
$1 - (1 - F)^{3/2} = k_1 t$	
3	(S12)
$1 - (1 - F)^{1/2} = k_1 t$	
2	(S13)
$1 - \left[(1 - F)^2 \right]^{3/2} = k_2 t$	
$\overline{3}$	(S14)
	$F = k_{H} t^{1/2}$ $F = F_{0} - be^{-kt}$ $1 - (1 - F)^{3/2} = k_{1}t$ $\frac{1}{3}$ $1 - (1 - F)^{1/2} = k_{1}t$ $\frac{1}{2}$ $1 - [(1 - F)^{2}]^{3/2} = k_{2}t$ $\frac{1}{3}$

Weibull kinetics:

 $\ln\left[-\ln\left(1-F\right)\right] = -\beta lnt_d + \beta lnt \tag{S15}$

(S16)

 $F = k_p t^n$

Korsmeyer-Peppas (KP)/ Power law model:

where F denotes the fraction of drug released up to time t, k_0 , k_H , F_0 , b, k, $k_{1/3}$, $k_{1/2}$, $k_{2/3}$, β , t_d , k_p are the constants of the models and n is the release exponential which characterizes the release mechanism.

Fig. S1. a) $D_{12}DAB$, b) $D_{14}DAB$, c) $D_{16}DAB$ and d) $D_{18}DAB$ based NLCs *in-vitro* release profiles for Rifampicin loaded NLCs evaluated w.r.t. residuals obtained from the experimental data

Fig. S2. a) $D_{12}DAB$, b) $D_{14}DAB$, c) $D_{16}DAB$ and d) $D_{18}DAB$ based NLCs *in-vitro* release profiles for Dapsone loaded NLCs valuated w.r.t. residuals obtained from the experimental data.

Fig. S3. Fluorescence spectra of BSA upon addition of Rifampicin encapsulated- $D_{16}DAB$ NLCs at a) 298.15 Kb) 303.15 K c) 308.15 K and $D_{18}DAB$ NLCs at d) 298.15 K e) 303.15 K f) 308.15 K.

Fig. S4. Fluorescence spectra of BSA upon addition of Dapsone encapsulated- $D_{12}DAB$ NLCs at a) 298.15 b) 303.15 K c) 308.15 K and $D_{14}DAB$ NLCs at d) 298.15 e) 303.15 K f) 308.15 K.

Fig. S5. Fluorescence spectra of BSA upon addition of Rifampicin encapsulated- $D_{16}DAB$ NLCs at a) 298.15 K b) 303.15 K c) 308.15 K and $D_{18}DAB$ NLCs at d) 298.15 K e) 303.15 K f) 308.15 K.

Q-range	NLCs	Characteristic	0 mM	1 mM	5 mM	20 mM	50 mM	200 mM
		Parameters						
	D ₁₂ DAB	Guinier radius (nm)	74	77	77	73	71	55
		$I(0) (cm^{-1})$	750	1087	1313	1805	2154	1341
		M _w * 10 ⁷ (g/mol)	0.29	0.42	0.51	0.70	0.83	0.52
	D ₁₄ DAB	Guinier radius (nm)	80	85	86	81	80	65
		$I(0) (cm^{-1})$	1115	1753	2163	2919	3446	2437
Low		M _w * 10 ⁷ (g/mol)	0.43	0.67	0.83	1.12	1.32	0.94
Q-range	D ₁₆ DAB	Guinier radius (nm)	83	87	91	84	81	67
		$I(0) (cm^{-1})$	1294	2075	2632	3458	3754	2540
		M _w * 10 ⁷ (g/mol)	0.50	0.80	1.01	1.33	1.45	0.98
	D ₁₈ DAB	Guinier radius (nm)	70	73	77	72	71	66
		$I(0) (cm^{-1})$	710	1109	1508	1950	1999	1875
		M _w * 10 ⁷ (g/mol)	0.27	0.43	0.58	0.75	0.77	0.72
	D ₁₂ DAB	Scattering Invariant						
		$(cm^{-1}nm^{-3})$	0.570	0.615	0.642	0.670	0.637	0.609
		Porod constant (cm ⁻¹						
		nm ⁻⁴)	0.15	0.19	0.21	0.27	0.18	0.12
		Specific surface area						
		$(S/V) (nm^{-1})$	0.86	0.95	1.02	1.28	0.91	0.60
		Porod radii (R _P)						
High Q-		(nm)	18.4	20.3	201.3	23.3	25.1	21.8
range		Porod volume (V_P)						
		(nm ³)	25981	34858	40331	53207	66699	43475
	D ₁₄ DAB	Scattering Invariant						
		$(cm^{-1}nm^{-3})$	0.574	0.603	0.657	0.613	0.643	0.648
		Porod constant (cm ⁻¹						
		nm ⁻⁴)	0.136	0.151	0.228	0.125	0.193	0.170
		Specific surface area						
		$(S/V) (nm^{-1})$	0.75	0.78	1.09	0.64	0.94	0.82
		Porod radii (R _P)						• • •
		(nm)	20.9	23.9	24.9	28.2	29.3	26.1
		Porod volume (V_P)			64046		40	
		(nm ³)	38337	57344	64946	94003	105780	74245
	D ₁₆ DAB	Scattering Invariant		0.630	0.570	0	0.670	0.650
		$(cm^{-1} nm^{-3})$	0.565	0.648	0.670	0.661	0.679	0.658

Table S1 Model-free analysis generated Guinier radii, forward scattering I(0), scattering contrast Δ SLD, dispersed volume fraction ϕ , the molecular weight of solid spheres M_w, scattering Invariant, porod constant, specific surface area (S/V), Porod volume and radius

	Porod constant (cm ⁻¹						
	nm ⁻⁴)	0.094	0.184	0.253	0.184	0.213	0.163
	Specific surface area						
	$(S/V) (nm^{-1})$	0.52	0.89	1.19	0.88	0.98	0.78
	Porod radii (R _P)						
	(nm)	22.1	24.7	26.4	29.1	29.6	26.3
	Porod volume (V_P)						
	(nm ³)	45215	63204	77512	103280	108990	76245
D ₁₈ DAB	Scattering Invariant						
	$(cm^{-1} nm^{-3})$	0.645	0.628	0.662	0.638	0.619	0.644
	Porod constant (cm ⁻¹						
	nm ⁻⁴)	0.29	0.14	0.205	0.169	0.137	0.17
	Specific surface area						
	$(S/V) (nm^{-1})$	1.41	0.718	0.974	0.83	0.69	0.84
	Porod radii (R _P)						
	(nm)	18.9	23.8	24.9	27.5	28.4	25.9
	Porod volume (V_P)						
	(nm^3)	28157	56225	64694	87082	96423	73217

Table S2 Key parameters obtained after analysis of neutron scattering data experimentally for $D_{12}DAB$ NLCs upon electrolyte variation

Comp	onent	0 mM	1 mM	5 mM	20 mM	50 mM	200 mM
	^{1}N						
	(*10 ⁻⁷ nm ⁻³)	0.0062	0.0062	0.0108	0.0073	0.011	0.0218
	mu	14.43	15.67	13.38	19.55	18.71	19.93
Large	S	0.55	0.55	0.59	0.50	0.50	0.39
spheres	$/$	747201	956854	1102449	914687	801777	258445
	(nm ³)						
	R (nm)	56	61	64	60	58	39
	$\phi_{assumed}$ for	0.05	0.06	0.12	0.07	0.09	0.06
	spheres (%)						
	¹ N						
	$(*10^{-7} \text{nm}^{-3})$	136.97	147.04	149.76	147.70	146.32	141.82
	SLD _{core}	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06
	SLD _{shell}	8.26E-05	8.26E-05	8.26E-05	8.26E-05	8.26E-05	8.26E-05
Small	SLD _m	0.000584	0.000584	0.000584	0.000584	0.000584	0.000584
triaxial	a	0.95	0.95	0.95	0.95	0.95	0.95
core-shell ellipsoidal	b	2.40	2.40	2.40	2.40	2.40	2.40
micelles	с	9.96	9.96	9.96	9.96	9.96	9.96
	t	2.27	2.27	2.27	2.27	2.27	2.27
	V	770.35	770.35	770.35	770.35	770.35	770.35
	ϕ_{micelles} (%)	1.06	1.13	1.15	1.14	1.13	1.09

Table S3 Model-free analysis generated Guinier radii, forward scattering I(0), scattering contrast Δ SLD, dispersed volume fraction ϕ , the molecular weight of solid spheres M_w, scattering Invariant, porod constant, specific surface area (S/V), Porod volume and radius.

pD variation								
D ₁₂ DAB	Characteristic	2 pD	3 pD	5 pD	7 pD	9 pD	11 pD	
NLCs	Parameters							
	Guinier radius (nm)	78	78	79	80	72	53	
	$I(0) (cm^{-1})$	2220	1594	1323	1523	389	259	
Low	M _w * 10 ⁷ (g/mol)	0.86	0.61	0.51	0.58	0.15	0.10	
Q-range								
	Scattering Invariant							
	$(cm^{-1} nm^{-3})$	1.08	1.14	1.05	1.04	1.06	1.09	
	Porod constant (cm ⁻¹							
High Q-	nm ⁻⁴)	0.24	0.31	0.27	0.24	0.37	0.54	
range	Specific surface area							
	$(S/V) (nm^{-1})$	0.70	0.86	0.81	0.74	1.11	1.55	
	Porod radii (R _P)							
	(nm)	21.3	18.7	18.1	19.0	12.0	10.4	
	Porod volume (V_P)							
	(nm ³)	40609	27593	24739	28807	7254	4665	
		Plu	ronic additi	on				
D ₁₂ DAB	Characteristic	0 %	0.1 %	0.3 %	0.5 %	0.7 %	1 %	
NLCs	Parameters							
	Guinier radius (nm)	78	76	74	87	91	100	
Low	$I(0) (cm^{-1})$	1594	1510	1526	3388	3815	4861	
Q-range	$M_{w}^{*} 10^{7} (g/mol)$	0.61	0.58	0.59	1.31	1.47	1.87	
	Scattering Invariant							
	$(cm^{-1} nm^{-3})$	1.14	1.06	1.12	1.11	1.01	1.06	
	Porod constant							
High Q-	$(cm^{-1} nm^{-4})$	0.31	0.27	0.36	0.34	0.25	0.40	
range	Specific surface							
	area (S/V) (nm ⁻¹)	0.86	0.82	1.02	0.97	0.78	1.18	
	Porod radii (R _P)							
	(nm)	18.7	18.9	18.6	24.3	26.1	27.8	
	Porod volume (V _P)							
	(nm ³)	27593	28219	26864	60250	74717	90516	

Table S4	Key parameters obta	ained after analys	is of neutron	scattering dat	ta experimentally fo	r
D ₁₂ DAB	NLCs upon pD variat	tion				

pD variation							
Component	2 pD	3 pD	5 pD	7 pD	9 pD	11 pD	

	¹ N (*10 ⁻	0.407	1.54	0 (77	0.229	0.450	1.50
	[/] nm ³)	0.407	1.54	0.677	0.328	0.459	1.59
	mu	17.06	11.71	13.52	16.52	11.57	8.63
Large	р	2.55	2.65	2.65	2.65	2.65	2.65
spheres	S	0.72	0.66	0.66	0.66	0.66	0.66
	Average						
	volume						
	(nm ³)	19034	5494	8469	15446	5303	2199
	Average						
	R (nm)	281.9	120.1	138.7	169.5	118.7	88.5
	\$ assumed						
	for						
	spheres	0.077	0.005	0.057	0.051	0.024	0.025
	(%)	0.077	0.085	0.057	0.051	0.024	0.035
	7 N (*10)	14.6	-	-	-	-	0.001
)	8 11 8 11			_	_	16.22
	n	0.44					10.32
	P	0.26					0.021
	S Average	0.20	-	-	-	-	0.021
Mid sized	volume		-	-	-	-	
spheres	(nm^3)	3409					18274
I	Average	5407					10274
	R (nm)	13.5					164
	• • • • • • • • • • • • • • • • • • •	10.0	_		_	_	10.1
	for						
	spheres						
	(%)	0.50					0.02
	¹ N (*10 ⁻						
	⁷ nm ⁻³)	3.58E-05	3.10E-05	2.23E-05	2.88E-05	5.59E-05	6.44E-05
	SLD _{core}	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06
	SLD _{shell}	8.00E-05	4.90E-05	4.90E-05	4.90E-05	4.90E-05	4.90E-05
Small	SLD _m	0.000584	0.000584	0.000584	0.000584	0.000584	0.000584
triaxial	a	0.50	1.03	1.04	1.68	0.23	0.15
core-shell	b	2.93	2.57	2.98	2.49	3.83	4.47
ellinsoidal	-				-		

micelles	c	4.55	8.86	12.12	7.31	4.65	4.49
	t	2.1	2.1	2.1	2.1	2.1	2.1
	Average						
	volume						
	(nm^3)	28.16	98.15	157.44	128.43	17.32	12.55
	\$ micelles						
	(%)	0.10	0.30	0.35	0.37	0.10	0.08

Table S5 Key parameters obtained after analysis of neutron scattering data experimentally for $D_{12}DAB$ NLCs upon addition of polymer

Pluronic addition

Compo	onent	0 %	1 %	3 %	5 %	7 %	10 %
	¹ N (*10-						
	⁷ nm ⁻³)	0.442	0.600	0.823	0.196	0.151	0.084
	mu	17.65	16.59	15.67	24.71	26.44	31.24
Large spheres	S	0.66	0.66	0.66	0.66	0.66	0.66
	р	2.65	2.65	2.65	2.65	2.65	2.65
	Average volume						
	(nm ³)	18830	15629	13179	51696	63326	104432
	Average R (nm)	181.1	170.2	160.8	253.5	271.3	320.5
	φ _{assumed} for spheres (%)	0.083	0.094	0.11	0.10	0.096	0.087
	¹ N (*10 ⁻ ⁷ nm ⁻³)	285.413	214.107	189.014	113.458	85.9577	85.2923
	SLD _{core}	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06	-8.30E-06
	SLD _{shell}	4.90E-05	4.90E-05	4.90E-05	4.90E-05	4.90E-05	4.90E-05
Small triaxial	SLD _m	0.000584	0.000584	0.000584	0.000584	0.000584	0.000584
core-shell	a	0.86	0.86	0.86	0.86	0.86	0.86
ellipsoidal micelles	b	3.02	3.17	3.39	4.20	4.60	4.99
lincenes	c	8.44	10.54	11.43	17.07	19.95	18.83
	t	2.1	2.1	2.1	2.1	2.1	2.1
	Average volume						
	(nm ³)	92.41	121.27	140.36	259.93	332.59	340.13
	ϕ_{micelles} (%)	0.26	0.26	0.27	0.29	0.29	0.29

	Rifam	picin	Dap	osone
NLCs	EE (%)	LC (%)	EE (%)	LC (%)
D ₁₂ DAB	98.2± 0.18	1.44±0.05	97.1±0.20	0.065±0.003
D ₁₄ DAB	98.3±0.18	1.15±0.05	98.7± 0.21	0.055±0.003
D ₁₆ DAB	98.6± 0.20	1.29±0.05	98.8± 0.20	0.054±0.003
D ₁₈ DAB	98.2±0.16	1.66±0.05	96.6± 0.17	0.059±0.003

Table S6 Entrapment efficiency (EE) and Loading capacity (LC) for all the NLCs at 25 °C forRifampicin and Dapsone

Kinetic Model		D ₁₂ DAB	D ₁₄ DAB	D ₁₆ DAB	D ₁₈ DAB
Zero-order kinetics		0.00071	0.00056	0.00051	0.00089
	D	0.00406	0.99444	0.99183	0.9906
	ĸ	0.99490			
	R'	0.00221	0.00152	0.00177	0.0065
Higuchi kinetics	k _H	0.00942	0.00739	0.00664	0.01191
	P	0.9797	0.97447	0.98182	0.98536
	K				
	R'	0.00884	0.00689	0.00392	0.0101
First-order exponential kinetics	k	0.00282	0.00349	0.00339	0.0041
		0.99939	0.99908	0.99543	0.99909
	R				
	R'	0.00011	0.00011	0.00040	0.00025
Hixon-Crowell model	k _{1/3}	0.00102	0.00081	0.000725	0.00127
		0.99372	0.99353	0.99085	0.9885
	K				
	R'	0.00574	0.00374	0.00423	0.01627
Square root of mass	k _{1/2}	0.00037	0.00029	0.00025	0.00046
-		0.99608	0.99527	0.99274	0.99253
	R				
	R'	0.00046	0.00034	0.00041	0.00142
Three seconds	k _{2/3}	0.00182	0.00148	0.00134	0.0022
root of mass		0.98928	0.99047	0.98755	0.9813
	K				
	R'	0.03134	0.01847	0.01975	0.08068
Weibull kinetics	β	0.99413	1.10391	1.10963	1.01068
	n	0.99634	0.99441	0.96217	0.98907
	К				
	R'	0.35099	0.42091	3.72897	0.85718
Korsmeyer-Pennas (KP) model	k _k	0.00089	0.0004	0.00037	0.00113
	K	0.00000		0.00007	

Table S7 Rate constants and regression correlations {regression coefficient (R) and residual sum of squares (R')} using kinetic equations for the release of Rifampicin from D_xDAB NLCs

n	0.97305	1.0831	1.0933	0.98057
R	0.99542	0.99352	0.96015	0.98676

Table S	8 Rate	constants	and regression	correlations	{regression	coefficient (H	R) and	residual	sum
			0			(/		

Kinetic Model	Kinetic Model		D ₁₄ DAB	D ₁₆ DAB	D ₁₈ DAB
Zero-order kinetics	ko	0.00237	0.00236	0.00231	0.00318
-	R	0.96252	0.95398	0.95474	0.95051
-	R'	0.19409	0.23906	0.22479	0.46883
Korsmeyer-Peppas	$\mathbf{k}_{\mathbf{k}}$	-5.06672	-4.6325	-4.52007	-4.08233
(KP) model	n	0.85198	0.76702	0.73789	0.71403
-	R	0.97719	0.96858	0.97421	0.97687
Higuchi kinetics	$k_{\rm H}$	0.03313	0.0333	0.03258	0.04501
-	R	0.99498	0.9964	0.99698	0.99643
-	R'	0.02642	0.0190	0.01532	0.03459
First-order	k	0.00987	0.011	0.01067	0.01153
exponential kinetics	R	0.99894	0.99847	0.99797	0.99857
-	R'	0.00174	0.00229	0.00286	0.00377
Hixon-Crowell	k _{1/3}	0.0031	0.00309	0.00304	0.00392
model	R	0.95262	0.94361	0.94442	0.93402
-	R'	0.42539	0.51115	0.4848	0.97728
Square root of mass	k _{1/2}	0.00138	0.00136	0.00133	0.00198
-	R	0.97196	0.96404	0.96475	0.96668
-	R'	0.04811	0.06141	0.05714	0.11907
Three seconds	k _{2/3}	0.00433	0.00434	0.00429	0.0049
root of mass	R	0.92295	0.91304	0.91395	0.89
-	R'	1.41368	1.63052	1.57557	2.73399
Weibull kinetics	β	0.93493	0.84675	0.81489	0.83671
-	R	0.98567	0.97939	0.98375	0.99032
-	R'	1.23549	1.47159	1.06773	0.664

of squares (R')} using kinetic equations for the release of dapsone from D_xDAB NLCs

Table S9. Composition of investigated NLCs formulations including the amount of solid lipid, amount and type of liquid lipid, type of surfactant, type of alcohol and its inference

Formulations	Amount ofAmount ofsophorolipidliquid lipid(w/w %)(w/w %)		Type of liquid lipid	Type of Surfactant	Type of Alcohol
NLC-1 (Control)	40	60	Oleic acid	Tween 80	Ethanol
NLC-2	60	40	Oleic acid	Tween 80	Ethanol
NLC-3	40	60	Linoleic acid	Tween 80	Ethanol
NLC-4	40	60	Oleic acid	Tween 40	Ethanol
NLC-5	40	60	Oleic acid	Tween 80	Butanol

Formulation	NLC-1	NLC-2	NLC-3	NLC-4	NLC-5						
D ₁₂ DAB NLCs											
EE _{RIF} (%)) 98.2 98.8 96.1 97.				93.5						
EE _{DAP} (%)	97.1	98.8	95.8	96.3	95.2						
R _s in nm	106.0	108.3	99.7	102.1	96.3						
	D ₁₄ DAB NLCs										
EE _{RIF} (%)	98.3	99.3	96.7	97.8	94.3						
EE _{DAP} (%)	6) 98.7 9		96.3	96.8	95.2						
R _s in nm	110.4	114.1	102.1	104.1	97.2						
		D ₁₆ DAB	NLCs								
EE _{RIF} (%)	98.6	99.7	97.4 98.4		95.2						
EE _{DAP} (%)	98.8	99.5	96.8	97.1	95.7						
R _s in nm	113.9	116.0	105.7	108.8	103.8						
D ₁₈ DAB NLCs											
EE _{RIF} (%)	98.2	98.6	95.4	96.5	93.0						
EE _{DAP} (%)	96.6	98.4	95.3	95.9	94.5						
R _s in nm	99.6	106.7	95.8	97.8	90.7						

Table S10. Entrapment efficiency of Rifampicin (RIF) and Dapsone (DAP) loaded NLCs upon component variation

Rifampicin										
D _x DAB 'x'	T (K)	K _{sv} × 10 ⁴ (mol ⁻¹ L)	R ²	$\frac{K_b \times 10^4}{(mol^{-1}L)}$	R ²	n	-ΔG (kJ/	ΔH (kJ/	ΔS (J/K	
							mol)	mol)	mol)	
12	298.15	0.097	0.99	6.82	0.98	1.40	27.58	_	233.20	
	303.15	0.093	0.99	10.10	0.99	0.90	29.51	41.91	235.72	
	308.15	0.073	0.99	14.37	0.99	0.85	29.92		233.23	
14	298.15	0.104	0.98	12.85	0.99	0.99	29.15		203.04	
	303.15	0.103	0.99	15.65	0.99	0.80	30.13	31.35	202.94	
	308.15	0.102	0.99	19.38	0.99	0.67	31.18		203.04	
16	298.15	0.112	0.98	11.50	0.99	1.03	28.88		264.62	
	303.15	0.098	0.99	13.25	0.98	0.86	29.72	49.98	263.03	
	308.15	0.091	0.99	22.10	0.99	0.64	31.52		264.60	
18	298.15	0.090	0.98	9.55	0.98	0.78	28.57		128.57	
	303.15	0.067	0.98	11.58	0.99	0.74	29.01	9.74	127.90	
	308.15	0.060	0.99	13.99	0.99	0.79	29.85		128.56	
				Dapsone						
12	298.15	0.027	0.99	5.81	0.98	1.20	27.64		195.69	
	303.15	0.025	0.99	9.19	0.98	0.77	28.32	30.67	194.70	
	308.15	0.021	0.99	10.43	0.99	0.86	29.59	-	195.68	
14	298.15	0.029	0.99	10.80	0.99	1.26	26.82	_	286.01	
	303.15	0.027	0.99	13.24	0.99	0.86	28.71	58.41	287.53	
	308.15	0.022	0.98	15.96	0.99	0.78	29.69		286.03	
16	298.15	0.036	0.99	16.14	0.99	0.80	30.31		167.04	
	303.15	0.033	0.99	23.67	0.99	0.54	31.30	19.46	167.55	
	308.15	0.031	0.98	25.88	0.99	0.59	31.98		167.04	
18	298.15	0.027	0.99	10.30	0.99	0.92	28.78	-	179.40	
	303.15	0.023	0.99	11.20	0.99	0.88	29.42	24.68	178.54	
	308.15	0.021	0.99	14.36	0.99	0.78	30.57		179.39	

Table S11. Stern-Volmer constant K_{sv} , binding constant K_b , aggregation number n, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) with regression coefficients (R) for BSA-Rifampicin and BSA-Dapsone at different temperatures