Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supplementary Material

Fluorometric and colorimetric analysis of alkaline phosphatase

activity based on nucleotide coordinated copper ion as mimicking

polyphenol oxidase

Hui Huang^a*, Juan Bai^a, Jiao Li^a, Lulu Lei^a, Wenjing Zhang^a, Shujun Yan^a, Yongxin Li^b*

^aCollege of Food Science and Engineering, Jilin University, Changchun 130025, China.

^bCollege of New Energy and Environment, Jilin University, Changchun 130012, China

Figure S1 Comparison of catalytic activities of nanozymes synthesized in four kinds of buffer solutions. All the buffers are 10 mM, pH=8.5.

Figure S2 Comparison of catalytic activities of nanozymes in four buffers in the chromogenic reaction. All the buffers are 30 mM (pH=6.7).

Figure S3 The fluorescence spectra of nucleotides. The concentrations of ATP, ADP and AMP are 10 mM in 60 mM MES buffer (pH = 6.7). Ex = 220 nm.

Figure S4 The zeta potential of prepared nanozymes.

Figure S5 Steady-state kinetic assay of ATP-Cu (A and B) and laccase (C and D). The concentration of 2,4-DP was 0.0625, 0.125, 0.25, 0.5, 1 mM. The error bars represent the standard deviation of three measurements.

	· · · · · · · · · · · · · · · · · · ·	
Catalysts	V _{max} (mM/min)	$K_{m}(mM)$
ATP-Cu	0.0022	0.207
Laccase	0.0003	0.891

Table S1 The kinetic parameters of ATP-Cu and laccase

Figure S6 The catalytic activity of the supernatant and precipitation of the nanozymes cycled for 7 times, respectively.

Figure S7 Control experiment comparing single Cu²⁺ and ATP-Cu for PPO-like activity.

Table 52 comparison of unrefert methods for the determination of ALA.					
System	Linear range	Detection	Ref.		
	(U/L)	limit (U/L)			
Near infrared Ag ₂ S quantum dots and calcein	2-100	1.28	S1		
Facile colorimetric assay	60-100	5.4	S2		
Gold nanoparticles-based colorimetric assay	100-600	10	S3		
High-Resolution Colorimetric Assay	5-100	3.3	S4		
Real-time Ratiometric Fluorescent Assay	25-200	10	S5		
This work	1-30	0.3	-		

Table S2 Comparison of different methods for the determination of ALP.

Figure S8 The selectivity of the GTP-based method for ALP assay. Absorbance intensity at 510 nm for reaction solutions containing BSA (10 μ M), GSH (3 mM), L-Glutamate (100 μ g/mL), L-aspartic acid (100 μ g/mL), Glycine (100 μ g/mL), L-alanine (100 μ g/mL), Cl⁻ (3 mM), Br⁻ (3 mM), and OH⁻ (3 mM) respectively in the presence of 30 U/L of ALP.

Supplementary References

- M. Cai, C. Ding, F. Wang, M. Ye, C. Zhang and Y. Xian, *Biosens. Bioelectron.*, 2019, 137, 148-153.
- S2. D.-E. Wang, X. Gao, G. Li, T. Xue, H. Yang and H. Xu, Sens. Actuators B-Chem., 2019, 289, 85-92.
- C. M. Li, S. J. Zhen, J. Wang, Y. F. Li and C. Z. Huang, *Biosens. Bioelectron.*, 2013, 43, 366-371.
- S4. Z. Gao, K. Deng, X.-D. Wang, M. Miro and D. Tang, ACS Appl. Mater. Interfaces, 2014, 6, 18243-18250.
- S5. J. Deng, P. Yu, Y. Wang and L. Mao, Anal. Chem., 2015, 87, 3080-3086.