Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Smart Supramolecular Gels of Enolizable Amphiphilic Glycosylfuran

Ayyapillai Tamizhanban,^a Krishnamoorthy Lalitha,^a Guru Prasanth Sarvepalli, ^{a,,b} C. Uma Maheswari,^a Vellaisamy Sridharan,^c John Bosco Balaguru Rayappan,^b and Subbiah Nagarajan^{*a,d}

^aDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India

^bSchool of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India

^cDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, India.

^dDepartment of Chemistry, National Institute of Technology Warangal, Warangal -506004, Telangana, India. E-mail: <u>snagarajan@nitw.ac.in</u>, <u>snrajannpt@gmail.com</u>

Table of Contents

Table S1. Optimization of reaction condition	2
Table S2. Solvents/Oils used for gelation studies	2
Figure S1. (a) NMR and Mass spectral studies.	4
Figure S2. Images of gel formed by compound 5g	5
Figure S3. Optical microscopy image of (a-d) GH and (e-h) SGH respectively	5
Figure S4. FESEM image of (a-d) GH and (e-h) SGH respectively.	5
Figure S5. FETEM image of (a-f) Crystalline structure in water under neutral pH by	
glycosylfuran, 5g and (g,h) SGH respectively.	6
Figure S6. FTIR spectra of compound 5a-g	6
Figure S7. (a-f) XPS spectra of xerogel formed by GH and SGH	7
Figure S8-S23. NMR spectra	8
Figure S24. H ₂ S interaction/sensing studies	16

Table S1. Optimizatio	on of reaction condition
-----------------------	--------------------------

S. No	Solvent	Temperature (°C)	Time (h)	Yield (%) ^{\$}
1	Dioxane	50	24	NR
2	Acetone	50	24	54
3	Acetonitrile	50	24	35
4	Isopropanol	50	24	38
5	<i>t</i> -BuOH	50	24	23
6	DMSO	50	24	Trace [#]
7	H ₂ O	50	24	Trace [#]
8	DCM	50	24	Trace [#]
9	DMF	50	24	Trace [#]
10	Toluene	50	24	10
11	Acetone	60	24	47
12	Acetone	70	24	Trace [#]
13	Acetone	50	48	78
14	Acetone	50	60	83
15	Acetone	50	72	79

Note: Reactions performed at < 50 °*C did not furnish the corresponding product in good yield, hence not shown in the optimization table.* [#] *observed trace product in TLC.* ^{\$}*isolated yield after column chromatography.*

S.	Solvent/vegetable oils	Observation Critical Gel Concentration (CGC wt/v%					C wt/v%)	
No.		5a	5b	5c	5d	5e	5f	5g
1	Ethanol	S	S	S	S	S	S	S
2	<i>n</i> -Butanol	S	S	S	S	S	S	S

Table S2. Solvents/Oils used for gelation studies

3	Octanol	S	S	S	S	S	S	S
4	Decanol	S	S	S	S	S	S	S
5	Dodecanol	S	S	S	S	S	S	S
6	Toluene	S	S	S	S	S	S	PG
7	Benzene	S	S	S	S	S	S	S
8	Diesel	S	S	S	S	S	S	S
9	1,2-Dichlorobenzene	S	S	S	S	S	PG	G
10	Chloroform	S	S	S	S	S	S	S
11	Hazelnut oil	S	S	S	PG	G (1)	G (1)	G(0.7)
12	Olive oil	S	PG	S	PG	G (1)	G (1)	G(0.8)
13	Heavy paraffin oil	S	PG	S	G(1)	G (1)	G (1)	G(0.6)
14	Light paraffin oil	S	S	S	PG	PG	PG	G (1)
15	Sesame oil	S	S	S	PG	PG	PG	PG
16	Linseed oil	S	S	S	PG	PG	G (1)	G (0.6)
17	H ₂ O	Ι	Р	Р	Р	Crys	Crys	Crys
18	DMSO+ H ₂ O (1:9)*	S	Р	S	Р	Р	PG	G (1)
19	DMF+ $H_2O(1:1)$	S	Р	S	Р	Р	PG	PG
20	Ethylacetate	S	S	S	S	S	S	S
21	Cyclohexane	S	S	S	S	S	S	S
22	EPALO	S	S	S	S	S	PG	G (1)
23	Castor oil	S	S	S	S	S	S	PG

* Self-sorting gel under basic pH was observed even without using heating cooling cycle

NMR and mass spectral analysis

The addition of freshly prepared 1 wt/v% Na₂S solution into the solution of **5g** (1 wt/v%) dramatically accelerate the gelation process by encapsulating Na2S and H2S via the intermolecular interactions. Xerogel obtained from SGH is subjected to the mass spectral analysis. Mass spectral data reveals the enolization of 5g along with the strongly interacted H_2O and Na₂S in xerogel state. Exact mass calculated for C29H51Na2O8S m/z = 605.3100; found m/z = 605.1759

Figure S1. (a) ¹H NMR spectra of compound 3 in D₂O; (b) ¹H NMR spectra of compound 3 in D2O + NaOH 1wt/v%; (c) Mass spectra of xerogel of SGH in MeOH and (d) FTIR spectral comparison of 5g in amorphous state, GH xerogel and SGH xerogel.

Figure S2. Images of gel formed by compound **5g** in a) 1 wt/v% of Na₂S under self-sorting condition (SGH); b) 1 wt/v% of NaOH under self-sorting condition (GH); c) 1 wt/v% of Na₂S under the influence of heating cooling cycle.

Figure S3. Optical microscopy image of (a-d) GH and (e-h) SGH respectively

Figure S4 FESEM image of (a-d) GH and (e-h) SGH respectively.

Figure S5 FETEM image of (a-f) Crystalline structure in water under neutral pH by glycosylfuran, 5g and (g,h) SGH respectively.

Figure S7. (a-f) XPS spectra of xerogel formed by GH and SGH

Figure S9. ¹³C NMR of compound, 3 in D₂O

Figure S11. ¹³C NMR of compound, 5a in CDCl₃

Figure S13. ¹³C NMR of compound, 5b in CDCl₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S15. ¹³C NMR of compound, 5c in CDCl₃

Figure S17. ¹³C NMR of compound, 5d in CDCl₃

Figure S19. ¹³C NMR of compound, 5e in CDCl₃

Figure S21. ¹³C NMR of compound, 5f in CDCl₃ at 300 K

H2S interaction/sensing studies

The sensing response H_2S generated from Na_2S has been calculated using the equation, $S = R_a/R_8$, where R_a represents the resistance at the ambient atmosphere and R_g is the resistance of the sensing element in the presence of the target gas.

Figure S24. (a) representation of H_2S Sensing characteristics of **5g** in amorphous state (red) and xerogel of GH in assembled state (blue) towards 1% and 2% of Na₂S concentration. (b-e) shows the transient responses GH & amorphous 5g sensing elements towards 1% and 2% of Na_2S concentration dissolved in water.