# **Supporting Information**

# Biotinylated and fluorophore-incorporated polymeric mixed micelles

### for tumor cell-specific turn-on fluorescence imaging of Al<sup>3+</sup>

Cai-Xia Wang, <sup>a</sup> Shu-Lun Ai, <sup>b</sup> Bo Wu, <sup>b</sup> Shi-Wen Huang, <sup>\*b</sup> Zhihong Liu <sup>\*a</sup>

<sup>a</sup>Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,

Ministry of Education Key Laboratory for the Synthesis and Application of Organic

Functional Molecules and College of Chemistry and Chemical Engineering, Hubei

University, Wuhan 430062, P. R. China.

<sup>b</sup>Key Laboratory of Biomedical Polymers (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.

\*Corresponding author.

E-mail address: zhhliu@whu.edu.cn; swhuang@whu.edu.cn



mPEG-Dye b



#### The structural characterization of compound 1

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): $\delta$ 11.486 (s, H<sub>a</sub>), 9.706 (s, H<sub>b</sub>), 7.43 (d, H<sub>c</sub>), 6.545 (d, H<sub>d</sub>), 6.416 (s, H<sub>e</sub>), 4.003 (t, 2 H<sub>f</sub>), 1.793 (t, 2 H<sub>g</sub>), 1.585(d, 2 H<sub>h</sub>), 1.447-1.259 (m, 24H<sub>i</sub>), 0.88 (d, 3 H<sub>i</sub>).



Figure S2. <sup>1</sup>H NMR spectrum of compound 1 in CDCl<sub>3</sub>.

### The structural characterization of compound 2

<sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400 MHz):δ7.90 (d, 2H<sub>a</sub>), 7.054 (d, 2H<sub>b</sub>), 4.157 (t, 2H<sub>c</sub>), 3.792 (s,

3H<sub>d</sub>), 3.738(t, 2H<sub>e</sub>), 3.486 -3.421 (m, 176 H<sub>f</sub>), 3.247 (s, 3 H<sub>g</sub>).



Figure S3. <sup>1</sup>H NMR spectrum of compound 2 in deuterated DMSO.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): $\delta$ 7.907 (d, 2H<sub>a</sub>), 6.866 (d, 2H<sub>b</sub>), 4.117 (t, 2H<sub>c</sub>), 3.81 (s, 3H<sub>d</sub>), 3.746 (t, 2H<sub>e</sub>), 3.646 -3.487 (m, 176 H<sub>f</sub>), 3.313 (s, 3 H<sub>g</sub>).



Figure S4. <sup>1</sup>H NMR spectrum of compound 2 in CDCl<sub>3</sub>.

#### The structural characterization of compound 3

<sup>1</sup>H NMR (DMSO-d<sub>6</sub>, 400 MHz): $\delta$ 9.622 (t, H<sub>a</sub>), 7.799 (d, 2H<sub>b</sub>), 6.997 (d, 2H<sub>c</sub>), 4.157 (d, 2H<sub>d</sub>), 4.134 (t, 2H<sub>e</sub>), 3.742(t, 2H<sub>f</sub>), 3.505 -3.43 (m, 176 H<sub>g</sub>), 3.235 (s, 3 H<sub>h</sub>), 1.234 (s, H<sub>2</sub>O).



Figure S5. <sup>1</sup>H NMR spectrum of compound 3 in deuterated DMSO.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): 7.762 (d, 2H<sub>b</sub>), 6.942 (d, 2H<sub>c</sub>), 4.163 (d, 2H<sub>e</sub>), 3.846 (t, 2H<sub>f</sub>), 3.689 -3.523 (m, 176 H<sub>g</sub>), 3.355 (s, 3 H<sub>h</sub>), 1.228 (s, H<sub>2</sub>O).



### The structural characterization of the polymer mPEG-Dye

Isomer a: <sup>1</sup>H NMR (DMSO-d<sub>6</sub>,400 MHz):  $\delta$ 11.888 (s, H<sub>1</sub>), 8.514 (s, H<sub>2</sub>), 7.916 (d, 2H<sub>3</sub>), 7.398(d, H<sub>4</sub>), 7.099(d, 2H<sub>5</sub>), 6.517(m, H<sub>6</sub>, H<sub>7</sub>),4.18(t, 2H<sub>8</sub>),3.973(t, 2H<sub>9</sub>), 3.771 (t,2H<sub>10</sub>), 3.582-3.501 (m, 176H<sub>11</sub>), 3.232 (s, 3H<sub>12</sub>), 1.693 (m,2H<sub>13</sub>), 1.40 -1.232 (m, 26H<sub>14</sub>), 0.845 (t, 3H<sub>15</sub>)

Isomer b: <sup>1</sup>H NMR (DMSO-d<sub>6</sub>,400 MHz): δ11.689 (s, H<sub>1</sub>), 8.319 (s, H<sub>2</sub>), 7.892(d, 2H<sub>3</sub>), 7.369(d, H<sub>4</sub>), 7.070(d, 2H<sub>5</sub>), 6.468(m, H<sub>6</sub>, H<sub>7</sub>), 4.18(t, 2H<sub>8</sub>), 3.973(t, 2H<sub>9</sub>), 3.771 (t, 2H<sub>10</sub>), 3.582-3.501 (m, 176H<sub>11</sub>), 3.232 (s, 3H<sub>12</sub>), 1.693 (m, 2H<sub>13</sub>), 1.40 -1.232 (m, 26H<sub>14</sub>), 0.845 (t, 3H<sub>15</sub>)



**Figure S7.** <sup>1</sup>H NMR spectrum of polymer mPEG-Dye in deuterated DMSO. <sup>1</sup>H NMR (CDCl<sub>3</sub>,400 MHz): δ8.409 (s, H<sub>2</sub>), 7.821(d, 2H<sub>3</sub>), 7.303(d, H<sub>4</sub>), 6.945(d, 2H<sub>5</sub>), 6.513(m, H<sub>6</sub>, H<sub>7</sub>), 4.178(t, 2H<sub>8</sub>), 3.937(t, 2H<sub>9</sub>), 3.861 (t, 2H<sub>10</sub>), 3.702-3.537 (m, 176H<sub>11</sub>), 3.366 (s, 3H<sub>12</sub>), 1.738 (m, 2H<sub>13</sub>), 1.429 -1.241 (m, 26H<sub>14</sub>), 0.862 (t, 3H<sub>15</sub>)



Figure S8. <sup>1</sup>H NMR spectrum of polymer mPEG-Dye in CDCl<sub>3</sub>.



**Figure S9.** (a) Benesi-Hildebrand analysis of the emission changes for the complexation between mPEG-Dye and  $Al^{3+}$ . (b) Linear fluorescence enhancement of mPEG-Dye (20  $\mu$ M) response to  $Al^{3+}$  concentration (0-10  $\mu$ M).



**Figure S10.** Job's plots for determining the stoichiometry of mPEG-Dye (M) and Al<sup>3+</sup> in H<sub>2</sub>O. The total con centration of mPEG-Dye and Al<sup>3+</sup> was 20  $\mu$ M ( $\lambda_{ex}$  = 408 nm,  $\lambda_{em}$  = 467 nm).



**Figure S11.** <sup>1</sup>H NMR of mPEG-Dye (10 mM) in DMSO-d<sub>6</sub> upon addition of various amount of  $Al^{3+}$  cation.

| Table S1. Physicochemical properties of two micelles |                             |                                   |                  |  |  |  |  |  |
|------------------------------------------------------|-----------------------------|-----------------------------------|------------------|--|--|--|--|--|
| Sample                                               | TEM<br>particle<br>size(nm) | Hydrodynamic<br>particle size(nm) | PDI              |  |  |  |  |  |
| mPEG-Dye                                             | 15±3                        | 18±0.05                           | 0.213±0.01       |  |  |  |  |  |
| mPEG-Dye-Biotin                                      | 18±3                        | 21±0.04                           | $0.201 \pm 0.01$ |  |  |  |  |  |



Figure S12. Fluorescence spectra of mPEG-Dye (20  $\mu$ M) alone, mPEG-Dye-Biotin (20  $\mu$ M) alone, mPEG-Dye (20  $\mu$ M) with Al<sup>3+</sup> (200  $\mu$ M) and mPEG-Dye-Biotin (20  $\mu$ M) with Al<sup>3+</sup> (200  $\mu$ M) in H<sub>2</sub>O.



**Figure S13.** (a) Benesi-Hildebrand analysis of the emission changes for the complexation between mPEG-Dye-Biotin and  $Al^{3+}$ . (b) Linear fluorescence enhancement of mPEG-Dye-Biotin (20  $\mu$ M) response to  $Al^{3+}$  concentration (0-10  $\mu$ M).



Figure S14. Cytotoxicity of mPEG-Dye-Biotin and mPEG-Dye against HeLa cells. Data are presented as  $\pm$ SD (n=4).

| Table 52 Comparison of some senili base probes for Al <sup>5</sup> detection | Table | e S2 Co | omparison | of some | schiff base | probes | for Al <sup>3-</sup> | <sup>+</sup> detection |
|------------------------------------------------------------------------------|-------|---------|-----------|---------|-------------|--------|----------------------|------------------------|
|------------------------------------------------------------------------------|-------|---------|-----------|---------|-------------|--------|----------------------|------------------------|

| Probe                                        | Testing media                                     | Association           | Detection                | Imaging         |
|----------------------------------------------|---------------------------------------------------|-----------------------|--------------------------|-----------------|
|                                              |                                                   | Constant              | limit (M)                | Al <sup>5</sup> |
|                                              |                                                   | $(\mathbf{M}^{*})$    |                          | in live         |
| Dragant work                                 | A (1120)15                                        | 0.5 × 104             | $2.02 \times 10^{-8}$    | Vas             |
| (mDEC Due Dietin)                            | Aqueous                                           | $9.3 \times 10^{-5}$  | $2.02 \times 10^{\circ}$ | res             |
| (IIIPEG-Dye-Blouin)                          | Solution                                          | $4.00 \times 104$     | $2.7 \times 10^{-8}$     | Na              |
| Diarylethene-based                           | Acetomume                                         | $4.90 \times 10^{-1}$ | $2.7 \times 10^{-6}$     | INO             |
| nuorescentchemosensor (10) <sup>4</sup>      | M. (1                                             | 4 72 104              | 1 24 10 5                | NT              |
| Nitrogen neterocycle                         | Methanol                                          | $4.72 \times 10^{4}$  | $1.24 \times 10^{-5}$    | NO              |
| platformbased fluorescence                   |                                                   |                       |                          |                 |
| chemosensor(L) <sup>2</sup>                  | CH CN                                             | 5 44 104              | 2 1 10-7                 | NT              |
| Fluorene-based Schiff-base                   | CH <sub>3</sub> CN                                | $5.44 \times 10^{4}$  | $3.1 \times 10^{-7}$     | No              |
| fluorescent chemosensor(F3) <sup>3</sup>     |                                                   | 0.4.4 1.02            | <b>5</b> 10-7            | Ът              |
| Tetra(3-[benzoylhydrazone]-                  | DMSO: $H_2O$                                      | $9.44 \times 10^{2}$  | $5 \times 10^{-7}$       | No              |
| methyl-4-hydroxyphenyl) ethene               | (9:1, v/v)                                        |                       |                          |                 |
| $(IV)^4$                                     |                                                   | 0.66 1.05             | 1 7                      |                 |
| Oligothiophene-phenylamine-                  | THF: $H_2O$                                       | $8.66 \times 10^{3}$  | $1.77 \times 10^{-7}$    | No              |
| based fluorescence sensor (3TP) <sup>5</sup> | (7:3, v/v)                                        |                       |                          |                 |
| 2-amino-4,5-imidazoledicarbo-                | MeOH: $H_2O$                                      | $2.7 \times 10^{3}$   | $3.44 \times 10^{-6}$    | No              |
| nitrile and 8-hydroxy-julolidine-9-          | (5:15, v/v)                                       |                       |                          |                 |
| carboxaldehyde(1) <sup>6</sup>               |                                                   |                       |                          |                 |
| Fluorescence chemosensor based               | C <sub>2</sub> H <sub>5</sub> OH:H <sub>2</sub> O | $7.03 \times 10^{3}$  | $1.1 \times 10^{-7}$     | No              |
| on rhodamine and azobenzene                  | (4:1, v/v)                                        |                       |                          |                 |
| moieties(L) <sup>7</sup>                     |                                                   |                       |                          |                 |
| Schiff base fluorescence probe               | EtOH:H <sub>2</sub> O                             | $6.74 \times 10^{3}$  | $1.07 \times 10^{-6}$    | Yes             |
| (STH) <sup>8</sup>                           | (9:1, v/v)                                        |                       |                          |                 |
| Unsymmetrical azine derivative               | DMSO: $H_2O$ :                                    | $2.47 \times 10^{4}$  | $1.65 \times 10^{-7}$    | Yes             |
| (NDEA) <sup>9</sup>                          | MeOH                                              |                       |                          |                 |
|                                              | (0.1:1.9:8.0,                                     |                       |                          |                 |
|                                              | v/v)                                              |                       |                          |                 |
| Schiff base-type fluorescent                 | Aqueous                                           | $7.80 \times 10^{4}$  | $0.17 \times 10^{-6}$    | Yes             |
| chemosensor <sup>10</sup>                    | solution                                          |                       |                          |                 |

#### References

- S. Wang, L. Ma, G. Liu and S. Pu, *Dyes Pigm.*, 2019, **164**, 257-266.
  J. Lv, Y. Fu, G. Liu, C. Fan and S. Pu, *RSC Adv.*, 2019, **9**, 10395-10404.
  M. Tajbakhsh, G. B. Chalmardi, A. Bekhradnia, R. Hosseinzadeh, N. Hasani and M. A. Amiri, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2018, **189**, 22-31.
  F. Wang, X. Zeng, X. Zhao, H. Lu and Q. Wang, *J. Lumin.*, 2019, **208**, 302-306.
  Z. Guo, Q. Niu and T. Li, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2018, **200**, 76-84.

- S. Y. Kim, S. Y. Lee, J. H. Kang, M. S. Kim, A. Kim and C. Kim, *J. Coord. Chem.*, 2018, **71**, 2401-2414. 6

- 71, 2401-2414.
  7 S. Chand, M. Mondal, S. C. Pal, A. Pal, S. Maji, D. Mandal and M. C. Das, New J. Chem., 2018, 42, 12865-12871.
  8 Y. Zhu, X. Gong, Z. Li, X. Zhao, Z. Liu, D. Cao and R. Guan, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2019, 219, 202-205.
  9 R. Yadav, A. Rai, A. K. Sonkar, V. Rai, S. C. Gupta and L. Mishra, New J. Chem., 2019, 43, 7109-7119.
  10 Y. Y. Guo, L. Z. Yang, J. X. Ru, X. Yao, J. Wu, W. Dou, W. W. Qin, G. L. Zhang, X. L. Tang and W. S. Liu, Dyes Pigm., 2013, 99, 693-698.