Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Calculation of DP and M_{n,NMR} from the NMR results.

The number-average molecular weight ($M_{n,NMR}$) and degree of polymerization (DP) of GMA unit were calculated from the integral values of the methylene of PEG chain proton signal (4 × 113 protons) in the range of 3.74-3.48 ppm and that of the methylene in epoxide (1× DP protons) in the range of 3.36-3.16 ppm.

Taking PEG-PGMA₅₁ as an example, amplifying the integral of the methylene signal (3.74-3.48 ppm) of PEG chain proton to 452 (the methylene proton number on the PEG), the integral of the methylene in epoxide (3.36-3.16 ppm) was 51.36, meaning there was 51 epoxide groups in a PEG-PGMA copolymer. So the DP of GMA should be 51 in the PEG-PGMA₅₁. The $M_{n,NMR}$ of the PEG-PGMA₅₁ could be calculated using the following formulation: 5000+51*142=12242.

Calculation of drug content from the ¹H NMR results.

degree of DOX conjugation

The degree of DOX conjugation could be calculated with the following formulation:

$$=\frac{y}{x+y} \times 100\%$$

where x is the integral of H signal at $8.22 \sim 8.50$ ppm (-CH=N-), y is the integral of H signal at $9.93 \sim 10.10$ ppm (-CHO).

Taking the PEG-P(GMA-CBA)₅₁-DOX as an example: x=0.47, y=1. The degree of

DOX conjugation was calculated as $\frac{0.47}{1+0.47} \times 100\% = 32\%$

 $n \bullet 32\% \bullet M_{DOX}$

So the drug content $(wt\%) = \overline{n \cdot (M_{GMA} + M_{CBA}) + n \cdot 32\% \cdot M_{DOX} + M_{PEG}}$ ×100%=32.47%

where n is the degree of polymerization of the relevant polymer, and M_{DOX} , M_{GMA} , M_{CBA} , and M_{PEG} is the molar mass of DOX, GMA, CBA and PEG, respectively.

Calculation of drug contents from the UV-vis results.

5.0 mg of PEG-P(GMA-CBA)_n-DOX was dissolved in 15 mL of DMSO. The solution was measured by UV-vis spectrometry at 480 nm, and the amount of DOX was calculated from a standard calibration curve obtained from a series of DOX solution in DMSO, as following:

Then the drug content was calculated, as following:

 $\frac{W_{DOX}}{W_{PEG - P(GMA - CBA) - DOX} \times 100\%}$

where W_{DOX} is the weight of DOX in PEG-P(GMA-CBA)-DOX, and $W_{PEG-P(GMA-CBA)}$ -DOX is the weight of PEG-P(GMA-CBA) -DOX.

14 16 Retention time (min) Fig. S2. GPC traces of the di-block copolymers: (A) PEG-PGMA₂₁, (B) PEG-PGMA₅₁, (C) PEG-PGMA₆₈, (D) PEG-PGMA₈₉.

18

20

12

10

Fig. S4. FT-IR spectra of (a) PEG-PGMA₅₁, (b) PEG-P(GMA-CBA)₅₁ and (c) PEG-P(GMA-CBA)₅₁-DOX.

Fig. S5. ¹H NMR of PEG-P(GMA-CBA)₈₉-DOX in DMSO-*d*₆.

Fig. S6. Normalized ACF curves of the proposed polyprodrug nanoparticles.

Fig. S7. The standard calibration curves of DOX in pH 7.4 PBS and pH 5.0 ABS measured by UV-vis spectra at 480 nm.