Electronic Supplementary Information (ESI) for

Facile colorimetric detection of alkaline phosphatase activity based on target-induced valence state regulation of oxidase-

mimicking Ce-based nanorods

Hongwei Song,^{a,b} Kun Ye,^a Yinxian Peng,^{b,*} Linjie Wang,^a Xiangheng Niu^{a,*} ^a Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China ^b School of Environmental and Chemical Engineering, Jiangsu University of Science

and Technology, Zhenjiang 212003, China

* Corresponding authors. E-mail: pyxhx@just.edu.cn; niuxiangheng@126.com

Figure S1. SEM image of original Ce-MOF.

Figure S2. Ce 3d XPS of original Ce-MOF.

Figure S3. EPR pattern of MVCM.

Figure S4. Effect of buffer pH on the MVCM+TMB reaction. Buffer: 0.2 M NaAc-HAc with different pH (adjusted by NaOH); TMB concentration: 0.17 mM; MVCM concentration: 0.05 mg mL⁻¹; reaction time: 10 min.

Figure S5. Steady-state kinetics measurement of MVCM as an oxidase mimic toward the TMB substrate.

Figure S6. UV-Vis spectra of the TMB chromogenic reaction catalyzed by MVCM or AA-treated MVCM (the inset shows the corresponding photograph, a—AA-treated MVCM+TMB, b—MVCM+TMB). TMB concentration: 0.17 mM; MVCM or AA-treated MVCM concentration: 0.05 mg mL⁻¹; reaction time: 10 min.

Figure S7. Ce 3d XPS of AA-treated MVCM.

Figure S8. UV-Vis spectra of the TMB chromogenic reaction catalyzed by MVCM or original Ce-MOF (the inset shows the corresponding photograph, a—original Ce-MOF+TMB, b—MVCM+TMB). TMB concentration: 0.17 mM; MVCM or original Ce-MOF concentration: 0.05 mg mL⁻¹; reaction time: 10 min.

Figure S9. Effects of other reducing species (GSH, Cys, and UA) on the AAsuppressed MVCM+TMB reaction. AA, GSH, Cys, or UA concentration: 100 μ M; TMB concentration: 0.17 mM; MVCM concentration: 0.05 mg mL⁻¹.

Figure S10. Effect of the reaction time of ALP and AAP on ALP activity detection.

n· · · i		Linear range	LOD	Ref.
Principle	Method	(U L ⁻¹)	(U L ⁻¹)	
PPi-triggered competitive displacement		2~100	0.18	[1]
of fluorescein-labeled DNA on MVCM	Fluorescent			
Copper-mediated DNA-sca olded		30~240	5	[2]
silver nanocluster switching	Fluorescent			
Inhibition of DNA-templated copper		0.3~7.5	0.3	[3]
nanoparticles by PPi	Fluorescent			
Quenching and restoration of the		2.5~40	1	[4]
fluorescence of CDs	Fluorescent			
PPi-mediated regulation of the		16.7~782.6	1.1	[5]
fluorescence of CQDs	Fluorescent			
Eu ³⁺ -mediated on-off-on	Dhaanhaaraant	0.15 19	0.065	[6]
phosphorescence of Mn-doped ZnSQDs	Phosphorescent	0.15~18		
Fluorogenic reaction of	Elucroscont	0.1~30	0.06	[7]
o-phenylenediamine and AA	Fluorescent			
Target-triggered competitive redox	Elucroscont	1~30	0.92	[8]
reaction of g-C ₃ N ₄ /CoOOH	Fluorescent			
Phosphate-quenched oxidase-like	Colorimetria	0~50, 50~250	2.3	[9]
activity of Ce4+ ions	Colorimetric			
Target-induced valence state regulation	Calarimatria	0.5~25	0.1	This
of oxidase-mimicking MVCM	Colorimetric			work

Table S1. Performance comparison of our strategy with previous approaches for ALP activity sensing.

Sample	Added (U L ⁻¹)	Measured (U L ⁻ ¹) ^a	Recovery (%)	RSD (n = 3, %)
1#	5	4.47	89.4	6.4
2#	10	10.39	103.9	5.1
3#	15	14.76	98.4	5.9
4#	20	21.10	105.5	4.4
5#	25	26.37	105.5	5.3

 Table S2. Recovery results of ALP spiked in serum.

^a The data were obtained after subtracting the original levels of ALP in human serum.

References

- [1] C. H. Wang, G. E. Tang and H. L. Tan, J. Mater. Chem. B 2018, 6, 7614-7620.
- [2] J. L. Ma, B. C. Yin, X. Wu and B. C. Ye, Anal. Chem. 2016, 88, 9219-9225.
- [3] L. L. Zhang, J. J. Zhao, M. Duan, H. Zhang, J. H. Jiang and R. Q. Yu, *Anal. Chem.*2013, 85, 3797-3801.
- [4] W. J. Kang, Y. Y. Ding, H. Zhou, Q. Y. Liao, X. Yang, Y. G. Yang, J. S. Jiang and M. H. Yang, *Microchim. Acta* 2015, **182**, 1161-1167.
- [5] Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. J. Shen, J. R. Chen and H. Feng, *Biosens. Bioelectron.* 2015, **68**, 675-680.
- [6] D. X. Li, J. Qin, Q. Xu and G. Q. Yan, Sens. Actuators B Chem. 2018, 274, 78-84.
- [7] D. Zhao, J. Li, C. Y. Peng, S. Y. Zhu, J. Sun and X. R. Yang, *Anal. Chem.* 2019, 91, 2978-2984.
- [8] S. G. Liu, L. Han, N. Li, Y. Z. Fan, Y. Z. Yang, N. B. Li and H. Q. Luo, Sens. *Actuators B Chem.* 2019, **283**, 515-523.
- [9] H. W. Song, H. Y. Wang, X. Li, Y. X. Peng, J. M. Pan and X. H. Niu, Anal. Chim. Acta 2018, 1044, 154-161.