Supporting information for

Self-assembled RNA-triple-

helix hydrogel drug delivery system targeting for triple-

negative breast cancer

Lairong Ding,^{a,b} Junwei Li,^{a,b} Changrong Wu,^b Feng Yan,^b Xuemei Li,*^b and Shusheng Zhang^b

[†]Center of Cooperative Innovation for Chemical Imaging Functional Probes in Universities of Shandong, College of Chemistry, Shandong Normal University, Jinan 250014, P.R. China.

[‡]Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Research Institute of Biochemical Analysis, Linyi University, Linyi 276005, P. R. China.

The supporting information has following contents:

- 1. Table 1 DNA/RNA sequences used in the experiment
- 2. Table 2 Relative tumor proliferation rate of RNA-triple-helix hydrogel
- 3. Figure S1 According to the fluorescence intensity to determinate the cleaning speed
- 4. Figure S2 Stability studies of RNA-triple-helix hydrogel in different solutions
- 5. Figure S3 Flow cytometry to test the targeted of RNA-triple-helix hydrogel.
- 6. Figure S4 In vivo tumor therapy via RNA-triple-helix hydrogel.

ss DNA	5'-PO ₄ -ATAGTGAGTCGTATTA TAA AAT CTT CCT GCC CAC CTT ATCTAAATGTGGTGGTTGTGATCCTAAAA AAG GTG GGC AGG AAG ATT TTA TTC CTA TTC TTA CCT GAA CTT CAC TCC ACT GAA ATC TGG T ATCCCT-3'					
miR-205 antisense	5'-FAM-CUUGUCCUUCAUUCCACCGGAGUCUGUC-3'					
miR-221 antagomiR	5'-FAM-CCUGAAAUCUACAUUGUAUGCCAGGUUGGU-3'					
Scrambled RNA- 205	5'-CGC AUA UUC UAA GUU AUC UCG GAG GAT A-3'					
Scrambled RNA- 221	5'-CGU AUU UCG CGU GAU AAC AUA CGA CUC UAA-3'					
T7 promotor	5'-TAATACGACTCACTATAGGAT-3'					
LXL apt-DNA-Chol	5'-FAM- GAATTCAGTCGGACAGCGAAGTAGTTTTCCTTCTAACCTAAGAACC CGCGGCAGTTTAATGTAGATGGACGAAAATCCTAGTGTTGGTGGTGT AAATC-Chol—3'					

Table 1 DNA/RNA sequences used in the experiment

All the sequence had no advanced purified after we got them.

Table 2	Relative tumor	proliferation	rate of RNA	-triple-helix	hydrogel
		1		1	

D0	D3	D6	D8	D9	D10	D12	D13	D14	D15	D16	D17
87	25	22	19	19	20	16	13	13	9	11	8

When the relative tumor proliferation rate is greater than 60%, it shows useless, while not vice versa. From the Table 2, we can see the effect of RNA triple helix. The volume of tumors were calculated by the following formula: T/C=TRTV/CRTV×100%, TRTV=Vt/V0, Vt:the real size of tumor size. V0:the first day of tumor size. CRTV represents the Control triple helix.

Figure S1 (A, B) Determinate the cleaning speed of miR-205 antisense and miR-221 antagomiR. (C) Quantitive analysis of the product at every stages.

Figure S2. Stability studies of RNA-triple-helix hydrogel in different solutions for 6 h. Lane 1, pH 7.4 PBS; lane 2, pH 5.5 buffer solution; lane 3, pH 7.4 FBS; lane 4, pH 5.5 FBS.

Figure S3. These three cells incubated with RNA-triple-helix hydrogel and 2 hours later, collected the fluorescence signals by Flow cytometry. A) Indicated that RNA-triple-helix hydrogecould get into the MDA-MB-231 cells. B) Indicated that RNA-triple-helix hydrogen could get into the MCF-7 cells a little. C) Indicated that RNA-triple-helix hydrogen could get into the HeLa cells a little.

Figure S4. In vivo tumor therapy via RNA-triple-helix hydrogel. A) Body weight changes in the indicated groups during treatment (It is associated with the indoor temperature). Data represent mean \pm standard deviation (SD) (n = 2 mice per group). B) The solid tumors got from these three groups. C) The H@E staining of these three groups organs indicated that there is no obvious metastasis among these organs.