Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Electronic supplementary information (ESI) for

BODIPY-based selenides as fluorescent probes for rapid, sensitive and mitochondria-specific detection of hypochlorous acid

Xiang-Hong Xu, Chao Liu, Yuan Mei and Qin-Hua Song*

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China

E-mail: <u>qhsong@ustc.edu.cn</u>

Contents

1. Summary of organoselenium-based fluorescent probes for HClO	S2-S4
2. Determination of fluorescence quantum yield (Φ_f)	S4
3. Spectral response and limit of detections (LOD)	
4. Photo- and thermostability of BSe-Bz, BSe-Et or BSe-Ph and products	
5. HRMS for the mixture of BSe-Bz or BSe-Et with HClO	S6
6. The selectivity of three probes for HClO	S7
7. pH Effect on the probes BSe-Et, BSe-Bz and BSe-Ph and their sensing HClO	S7
8. Cell experiments	S8
9. Copies of NMR spectra of related compounds	

entry	Probes	Response time	LOD	λ ^{abs} max /λ ^{em} max	References
1		a	a	500 nm /545 nm	Chem. Commun. 2011 , 47, 4373.
2	Se NO2	10 min	a	/392 nm	<i>Tetrahedron Lett.</i> 2012 , <i>53</i> , 3843.
3 ^b	H ₀ CO, CO, Se	5 min	980 nM	500 nm /510 nm	Chem. Commun. 2013 , 49, 1014.
4	Se NB FF	5 min	7.98 nM	^a /526 nm	Org. Lett. 2013 , 15, 878.
5	CM1:R=H CM2:R=CH ₃	CM1: 20 s	CM1: 10 nM	CM1: /480 nm	Org. Lett. 2013 , 15, 2002.
6	O N O V Se-	10 min	586 nM	430 nm /523 nm	Chem. Commun. 2013 , 49, 2445.
7	Se Se N.B.N.S F.F	a	<i>a</i>	524 nm /590 nm	Org. Lett. 2014 , 16, 520.
8		100 s	310 nM	750 nm /786 nm	Chem. Commun. 2014, 50, 1018.
9	NH Se-	10 min	586 nM	430 nm /523 nm	Phys. Chem. Chem. Phys. 2014, 16, 3749.
10 ^b		< 10 s	3.3 nM	483 nm /544 nm	RSC Adv. 2015 , 5, 79519.

1. Table 1. Summary of organoselenium-based fluorescent probes for HClO

11 ^b	Se Se Se	2 min	350 nM	415 nm /520 nm	<i>Chem. Commun.</i> 2015 , <i>51</i> , 10150.
12 ^b	See NH	a few seconds	18.5 nM	452 nm /540 nm	J. Photochem. Photobiol. A. 2015, 299, 1.
13 ^a	CI-SN-B-Se FF	1-2 min	19.6 nM	520 nm /526 nm	ChemAsian J. 2016 , 11, 24, 3598.
14 ^b	R- N-B-N- F-F R=H, CI	<1 s	R=H: 30.9 nM R=Cl: 4.5 nM	R=H: 512 nm /507 nm R=Cl: 526 nm /526 nm	Chem. Eur. J. 2016 , 22, 9642.
15 ^b	N N N Ph Ph	7 min	360	^a /436 nm	RSC Adv. 2016 , 6, 32013.
16	Se C	< 1 s	^a	403 nm /502 nm	Org. Lett. 2018 , 20, 3557
17	C SOC	<i>a</i>	<u></u> a	NCzPSe: 360 nm /345 nm DNCzPSe: 360 nm /360 nm	Chem. Commun. 2018 , 54, 2926.
18		< 5 s	4.6 nM	450 nm /618 nm	Chem. Commun. 2018 , 54, 11965.
19	See N-	< 1 s	90 nM	396 nm /523 nm	ACS Omega 2018, 3, 13474.
20		< 2 s	4.8 nM	410 nm /540 nm	New J. Chem. 2018 , 42, 15105.

	R _{`Se}				
		BSe-Et: < 2 s	BSe-Et: 0.3 nM	BSe-Et: 520 nm /548 nm	
21	Ň, Ē, Ň B, + E, E	BSe-Bz: < 5 s	BSe-Bz: 0.8 nM	BSe-Bz: 532 nm /545 nm	This work
	BSe-1: R = Et BBSe: R = CH ₂ Ph BSe-2: R = Ph	BSe-Ph: > 100 s	BSe-Ph: 9.2 nM	BSe-Ph: 532 nm /550 nm	

^a No available.

^b Work in a solvent mixture.

2. Determination of Fluorescence Quantum Yield (Φ_f)

The fluorescence quantum yields for three probes and their reaction systems with HClO were determined with 8-chloro-BODIPY ($\Phi_f = 0.72$ in THF) as a reference. The probe was dissolved in phosphate buffer solutions (20 mM, pH 7.4, 0.1% CH₃CN) and 8-Cl-BODIPY was dissolved in THF to suitable concentration (A < 0.05 at 495 nm). Their absorbance and fluorescence spectra were determined at this concentration. Finally, the fluorescence quantum yields of the probe and the reaction system with HClO (molar ratio of probe/HClO, 1:1) were calculated by the equation of $\Phi_x = \Phi_s (F_x/F_s)(A_s/A_x)(n_x/n_s)^2$. Where, x & s indicate the unknown and standard solution respectively, Φ = quantum yield, F = area under the emission curve, A = absorbance at excitation wave length, n = index of refraction of the solvent.

3. Spectral response and limit of detections (LODs)

Figure S1. (a) UV/vis absorption and (b) fluorescence spectra of the probe BSe-Et (10 μ M) in PBS buffer (pH=7.4, 20 mM, 0.1% CH₃CN) upon the addition of ClO⁻ (0-1.0 equiv.) recorded after 1 min, excitation at 495 nm. (c) The linear fitting diagram from (b).

Figure S2. (a) UV/vis absorption and (b) fluorescence spectra of the probe BSe-Ph (10 μ M) in PBS buffer (pH=7.4, 20 mM, 0.1% CH₃CN) upon the addition of ClO⁻ (0-1.0 equiv.) recorded after 5 min, excitation at 495 nm. (c) The linear fitting diagram from (b).

4. Photo- and thermostability of BSe-Bz, BSe-Et or BSe-Ph and their sensing HClO solutions

Figure S3. Time-dependent fluorescence intensity of three probes, BSe-Et, BSe-Bz, or BSe-Ph (10 μ M) upon the addition of HClO (10 μ M), excitation at 495 nm.

5. HRMS for the mixture of BSe-Bz or BSe-Et with HClO

Figure S4. HRMS of the sensing mixture of BSe-Bz toward NaClO

Figure S5. HRMS of the sensing mixture of BSe-Et toward NaClO

6. The selectivity of three probes for HClO

Figure S6a. (a) Fluorescence spectra and (b) intensity at 548 nm of BSe-Et (10 μ M) upon the addition of 10 μ M HClO and 100 μ M other species (1: blank, 2: HClO, 3: H₂O₂, 4: ONOO⁻, 5: •OH, 6: O₂•⁻, 7: ¹O₂, 8: TBHP, 9: CH₃COO⁻, 10: NO, 11: NO₂⁻, 12: TBO•) in PBS buffer (pH=7.4, 20 mM, 0.1% CH₃CN) recorded after 30 min. Excitation at 495 nm.

Figure S6b. (a) Fluorescence spectra and (b) intensity at 550 nm of BSe-Ph (10 μ M) upon the addition of 10 μ M HClO and 100 μ M other species (1: blank, 2: HClO, 3: H₂O₂, 4: ONOO⁻, 5: •OH, 6: O₂•⁻, 7: ¹O₂, 8: TBHP, 9: CH₃COO⁻, 10: NO, 11: NO₂⁻, 12: TBO•) in PBS buffer (pH=7.4, 20 mM, 0.1% CH₃CN) recorded after 30 min. Excitation at 495 nm.

Figure S7. (a) Fluorescence intensity of BSe-Bz (10 μ M) upon the addition of 10 μ M NaClO and 100 μ M other analytes (1: blank, 2: ClO⁻, 3: Fe³⁺, 4: Cu²⁺, 5: Mg²⁺, 6: Fe²⁺, 7: Zn²⁺, 8: Ca²⁺, 9: K⁺, 10: Na⁺, 11: Cys, 12: Hcy) in PBS buffer (pH = 7.4, 20 mM, 0.1% CH₃CN) recorded after 30 min, (b) further addition of HClO into above solutions, excitation at 495 nm. (c) Intensities at 547 nm for all samples from (a) and (b).

7. pH effect on the probes BSe-Et, BSe-Bz and BSe-Ph and their sensing HClO

Figure S8. Fluorescence responses of three probes BSe-Et, BSe-Bz or BSe-Ph (10 μ M) and their sensing NaClO (10 μ M) at different pH solutions (pH 2-11).

8. Cell experiments

MTT assay

Figure S9. Viability of RAW264.7 cells incubated with probe BSe-Bz (0-50 μ M) for 24 h. Data are mean \pm SE (bars) (n = 3).

Co-localization assay

Figure S10. Co-localization assay for fluorescence images of RAW 264.7 cells incubated with BSe-Bz (10 μ M) for 0.5 h, further incubated with HClO (10 μ M) for 0.5 h, and a mitochondrial dye (MitoTracker[@] Deep Red FM) (0.5 μ M) for 0.5 h. Merged image of (a) fluorescence image from a green-channel (495-598 nm), $\lambda_{ex} = 488$ nm and (b) fluorescence image from a red channel (640-728 nm), $\lambda_{ex} = 633$ nm; and overlap coefficients of two-channel images in three interesting area are 0.93, 0.92 and 0.90.

9. Copies of NMR spectra of related compounds

¹H NMR of 8-chloro-3,5-dimethyl BODIPY in CDCl₃, 400 MHz

¹³C NMR of 8-chloro-3,5-dimethyl BODIPY in CDCl₃, 100 MHz

¹H NMR of BSe-Ph in CDCl₃, 400 MHz

