Probing Two PESIN-Indocyanine dye-Conjugates: Significance of the Used Fluorophore

Ralph Hübner, ${ }^{a^{*}}$ Vanessa Benkert, ${ }^{\mathrm{b}}$ Xia Cheng, ${ }^{\text {c }}$ Björn Wängler, ${ }^{\mathrm{c}}$ Roland Krämer, ${ }^{\mathrm{b}}$ and Carmen Wängler ${ }^{\text {a* }}$
a Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
E-mail: ralph.huebner@medma.uni-heidelberg.de; carmen.waengler@medma.uniheidelberg.de
${ }^{\mathrm{b}}$ Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 274, 69120 Heidelberg, Germany
${ }^{c}$ Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany

Content

Experimental Section	page 2
Analytical data of final products	page 6
page 12	
Summarized results of competitive bindings experiments of BBN,	
PDC 1 and PDC 2	page 13
Results of photophysical measurements of PDC 1 and PDC 2 (absorption coefficients and quantum yield)	

Experimental Section

General

All commercially available chemicals and solvents were at least of analytical grade and used, if not otherwise stated, without further purification. Fmoc-protected amino acids and rink amid resin (loading $=0.52 \mathrm{mmol} / \mathrm{g}$) were purchased from NovaBiochem. Fmoc-PEG(4)-COOH (PEG = Polyethylenglycol; PEG 1820) was obtained from Iris Biotech. Dichloromethane, diethylether, dimethylformamide, HBTU ((2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate) and water where purchased from Carl Roth, acetonitrile from Häberle Labortechnik, DIPEA (N,N-Diisopropylethylamine), TIS (Triisopropylsilane) and IR-820 (2-((E)-2-((E)-2-chloro-3-((E)-2-(1,1-dimethyl-3-(4-sulfobutyl)-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-1,1-dimethyl-3-(4-sulfobutyl)-1 H-benzo[e]indol-3ium) from Sigma-Aldrich, 4-Carboxyphenylboronic acid and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Tetrakis(triphenylphosphine)palladium(0)) from TCI.

For HPLC chromatography, an Agilent 1200 system was used together with Chromeleon Software (Version 6.80). For analytical chromatography, a Chromolith Performance (RP-18e, 100-4.6 mm, Merck, Germany) and for semipreparative analyses, a Chromolith (RP-18e, 100-10 mm , Merck, Germany) column were used, respectively. ESI (Electrospray lonization) and MALDI (Matrix-Assisted Laser Desorption/lonization) spectra were obtained with Finnigan MAT95Q and Bruker Daltronics Microflex spectrometers. y-counting was performed using a 2480 Wizard gamma counter system from Perkin Elmer. A Cary 100 Bio system (Varian) was used to record the UV/Vis-Spectra. Fluorescence measurements were carried out on a Cary Eclipse spectrometer (Varian) and the procedure for determination of the relative fluorescence quantum yield was described before ${ }^{1}$. For all optical measurements, 4 mL PMMA cuvettes from SigmaAldrich were used.

The human tumor cell line PC-3 (GRPR positive) was obtained from DSMZ, [125]]-Tyr4-bombesin was purchased from Perkin Elmer (NEX258010UC, molar activity: $81.4 \mathrm{GBq} / \mu \mathrm{mol}$). RPMI 1640 medium, Opti-MEM I (GlutaMAX I), L-Glutamine and PenStrep were obtained from Gibco, FCS (fetal calf serum) from BioCell and Dulbecco's phosphate buffered saline (PBS), 0.25% Trypsin and 0.02% EDTA Solution in PBS from Sigma-Aldrich.

Syntheses

The PESIN peptide sequence was synthesized by standard peptide synthesis methods, using standard solid phase peptide synthesis Fmoc-based protocols ${ }^{2-4}$ and subsequent conjugation of the respective amino acids. The dye LS277 (2-((E)-2-((E)-4'-carboxy-6-((E)-2-(1,1-dimethyl-3-(4-sulfobutyl)-1,3-dihydro-2H-benzo[e]indol-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-1,1-dimethyl-3-(4-sulfobutyl)-1H-benzo[e]indol-3-ium) was synthesized according to literature methods ${ }^{5}$.

The dye CK002 (2-((E)-2-((E)-6-(2-((E)-5-carboxy-3,3-dimethyl-1-(4-sulfobutyl)indolin-2-ylidene)ethylidene)-3,4,5,6-tetrahydro-[1,1'-biphenyl]-2-yl)vinyl)-3,3-dimethyl-5-sulfo-1-(4-sulfobutyl)-3H-indol-1-ium) was prepared according to previous reports ${ }^{1}$.

General Synthesis of peptide-dye-conjugates
$25 \mu \mathrm{~mol}$ of freshly Fmoc-deprotected PESIN ($\mathrm{H}_{2} \mathrm{~N}-$ PEG $_{3}$-Gln-Trp-Ala-Val-Gly-His-Leu-Met- NH_{2}) on rink amid resin were reacted with 1.5 eq activated dye (each 34 mg) and heated ($80^{\circ} \mathrm{C}$) in DMF (4 mL) for $3-4 \mathrm{~h}$. The activation of the dyes was carried out beforehand with HBTU (0.95 eq.) and DIPEA (1.0 eq.) as base, for 10 minutes in DMF (2 mL). After the reaction was finished, the resin was filtered from solvent and washed subsequently thrice with DMF, water, dichloromethane and diethylether. After drying, the conjugates were cleaved from resin by using a TFA/TIS ($95 \% / 5 \%, 5 \mathrm{~mL}$) mixture for one hour. The acid was removed by reduced pressure and the residue was purified by HPLC. Detailed HPLC conditions, yields and analytical data are listed below.

PCD 1 HPLC gradient (semipreparative): $35-85 \% \mathrm{MeCN}+0.1 \%$ TFA in $8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}=4.21 \mathrm{~min}$. HPLC gradient (analytical): $0-100 \% \mathrm{MeCN}+0.1 \%$ TFA in $8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}=4.10 \mathrm{~min}$, yield: 10% (5 mg), purity: 99%, ESI-MS $(\mathrm{m} / \mathrm{z})$ for $[\mathrm{M}-2 \mathrm{H}]^{2-}$ (calculated): 1039.97 (1039.98); ESI-MS (m / z) for [M+2H] ${ }^{2+}$ (calculated): 1041.99 (1031.96). MALDI-MS (m / z) for [M+H] ${ }^{+}$(calculated): 2080.26 (2080.95); [$\mathrm{M}+\mathrm{Na}]^{+}$(calculated): 2102.28 (2103.94); $[\mathrm{M}+\mathrm{K}]^{+}$(calculated): 2118.25 (2119.92).

PCD 2 HPLC gradient (semipreparative): $25-65 \% \mathrm{MeCN}+0.1 \%$ TFA in $8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}=4.38 \mathrm{~min}$. HPLC gradient (analytical): $0-100 \% \mathrm{MeCN}+0.1 \%$ TFA in $8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}=3.46 \mathrm{~min}$, yield: 8% (4 mg), purity: 99%, ESI-MS (m / z) for $[\mathrm{M}+2 \mathrm{H}]^{2+}$ (calculated): 1031.95 (1031.94), ESI-MS (m / z) for [M-2H] ${ }^{2-}$ (calculated): 1029.93 (1029.94), MALDI-MS (m / z) for $[\mathrm{M}+\mathrm{H}]^{+}$(calculated) 2061.59 (2061.88); [M+Na] ${ }^{+}$(calculated): 2083.60 (2083.87); [M+K] ${ }^{+}$(calculated): 2099.60 (2099.84).

$\log _{D}$ determination

The water/octanol partition coefficient $\left(\log _{D}\right)$ was determined by semipreparative HPLC. For this purpose, $10 \mu \mathrm{~L}$ DMSO solution ($\mathrm{c}=5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$) of the respective substance was added to a mixture of 1 mL 1 -octanol and $990 \mu \mathrm{~L}$ phosphate buffered solution (pH 7.4) and vigorously shaken for 5 minutes. After centrifugation, the phases were separated and both phases were analyzed by semipreparative HPLC as described before. For each compound, the $\log _{D}$ was determined by three separate measurements, each experiment performed in triplicate.

Competitive receptor binding assay

The human tumor cell line PC-3 was cultured at $37^{\circ} \mathrm{C}$ in RPMI 1640 medium supplemented with 10% FCS, 1% L-Glutamine and 1% PenStrep in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$. The medium was exchanged every two or three days and cells were split at $>75 \%$ confluence. In vitro binding affinities were determined via competitive displacement experiments which were performed at least trice, each experiment performed in triplicate. A Millipore Multiscreen punch kit and Millipore 96 well filter plates were used. The plates were incubated with PBS/BSA (1\%) solution (each well $200 \mu \mathrm{~L}$) for one hour before use. PC-3 cells were harvested and suspended carefully in Opti-MEM I (GlutaMAX I) medium. $50 \mu \mathrm{~L}$ of a cell suspension containing 10^{5} cells
were seeded in each well. To this, a total volume of $50 \mu \mathrm{~L}$ was added to each well, containing 25 $\mu \mathrm{L}(0.012 \mathrm{kBq} / \mu \mathrm{L})$ of the GRPR-specific radioligand [$\left.{ }^{125}\right]$-Tyr${ }^{4}$-bombesin ($81.4 \mathrm{GBq} / \mu \mathrm{mol}$) and 25 $\mu \mathrm{L}$ of the respective competitor PDC 1, PDC 2 or endogenous bombesin (BBN, used as reference compound). The competitor was added in 11 increasing concentrations ranging from $0.5-1000 \mathrm{nM}$ for PDC 1 and PDC 2 or 0.1 - 250 nM for BBN, whereat the twelfth well contained no competitor to ensure 100\% binding of the radioligand. After one hour of incubation at ambient temperature, the solution was filtrated and the filters were washed with cold PBS (3 times). The filters were collected and measured by γ-counting. The 50% inhibitory concentration (IC_{50}) values of PDC 1, PDC 2 and bombesin were calculated by fitting the obtained data via a nonlinear regression analysis using GraphPad Prism Software (version 5.04).

References:

1. S. G. König and R. Kramer, Chemistry, 2017, 23, 9306-9312.
2. D. A. Wellings and E. Atherton, Methods in Enzymology, 1997, 289, 44-67.
3. C. Wängler, S. Maschauer, O. Prante, M. Schäfer, R. Schirrmacher, P. Bartenstein, M. Eisenhut and B. Wängler, ChemBioChem, 2010, 11, 2168-2181.
4. C. Wängler, B. Waser, A. Alke, L. Iovkova, H.-G. Buchholz, S. Niedermoser, K. Jurkschat, C. Fottner, P. Bartenstein, R. Schirrmacher, J.-C. Reubi, H.-J. Wester and B. Wängler*, 2010, 2010, 21, 2289-2296.
5. J. C. M. Hyeran Lee, and Samual Achilefu, J. Org. Chem., 2006, 71, 7862.

PDC 1

Chemical Formula: $\mathrm{C}_{107} \mathrm{H}_{140} \mathrm{~N}_{16} \mathrm{O}_{21} \mathrm{~S}_{\mathbf{3}}$ Exact Mass: 2080,954

PDC 2

Chemical Formula: $\mathrm{C}_{99} \mathrm{H}_{136} \mathrm{~N}_{16} \mathrm{O}_{24} \mathrm{~S}_{4}$
Exact Mass: 2060,880

Fig. S1: Structures and mass data for both conjugates PDC 1 and PDC 2.

Fig. S2 Analytical data for PDC 1 (ESI and MALDI mass spectroscopy).

Fig. S3: Analytical data for PDC 2 (ESI and MALDI mass spectroscopy).

Fig. S4: Analytical HPLC chromatogram for PDC 1 (8 min, $0 \rightarrow 100 \%$); $R_{t}=4.11 \mathrm{~min} ;(12 \mathrm{~min}, 0$ $\rightarrow 100 \%$); $\left.R_{t}=5.68 \mathrm{~min}\right)$.

Fig. S5: Analytical HPLC chromatogram for PDC 2 ($8 \mathrm{~min}, 0 \rightarrow 100 \%$); $\left.R_{t}=3.46 \mathrm{~min}\right)$; $(12 \mathrm{~min}, 0$ $\rightarrow 100 \%$); $\left.R_{t}=4.59 \mathrm{~min}\right)$.

Fig. S6: ${ }^{1} \mathrm{H}-\mathrm{NMR}-\mathrm{Data}$ of LS277: (${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta=1.40(\mathrm{~s}, 12 \mathrm{H}), 1.76(\mathrm{~m}$, $8 \mathrm{H}), 2.00(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{~m}, 4 \mathrm{H}), 6.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}=14.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}), 7.46(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.01(\mathrm{~m}, 6 \mathrm{H}), 8.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right)\right)$

Fig. S7: ${ }^{1} \mathrm{H}-\mathrm{NMR}$-Data of CK002: (${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} \mathrm{d}$): $\delta=1.11(\mathrm{~s}, 6 \mathrm{H}),, 1.12(\mathrm{~s}, 6 \mathrm{H}$,$) ,$ 1.66-1.81 (m, 8H,), 1.92-1.99 (m, 2H,), 2.53-2.59 (m, 4H,), 2.68-2.75 (m, 2H,), 4.00-4.04 ($\mathrm{m}, 2 \mathrm{H}$,), $4.22-4.47(\mathrm{~m}, 2 \mathrm{H}),, 6.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$,), $6.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$,), $6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ 13.6 Hz, 1H,), $7.25-7.31\left(\mathrm{~m}, 4 \mathrm{H}\right.$), 7.46 (d, з Ј $\mathrm{H}-\mathrm{H}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$,), $7.58-7.68(\mathrm{~m}, 5 \mathrm{H}),$,7.84 (d, ${ }^{3} \mathrm{~J}$ $=1.4 \mathrm{~Hz}, 1 \mathrm{H},), 7.87\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H},\right)$)

RH203 ($\mathrm{IC}_{50}: 20.58 \pm 0.72 \mathrm{nM}$)
RH2O7 ($\mathrm{IC}_{50}: 32.22 \pm 0.55 \mathrm{nM}$) BBN ($\mathrm{IC}_{50}: 8.07 \pm 0.56 \mathrm{nM}$)

Fig. S8: Summarized results of competitive bindings experiments of BBN, PDC 1 and PDC 2 determined on PC-3 cells.

PDC 1

PDC 2

PDC 1

ICG

PDC 2

Fig. S9: Results of photophysical measurements of PDC 1 and PDC 2 (absorption coefficients and quantum yield). All measurements were conducted in PBS ($\mathrm{pH}=7.4$). Quantum yields are referenced to ICG ($\phi_{\mathrm{f}}=0.13 \mathrm{in}$ DMSO) and were determined using an excitation wavelength of $\lambda_{\text {ex }}=705 \mathrm{~nm}$ (here RH205 = PDC 1 and RH203 PDC 2).

