Supplementary Information

Multifunctional, fluorescent DNA derived Carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels and dopamine detection

Pankaj Kumar Pandey¹, Preeti², Kamla Rawat³, Tulika Prasad²,⁴* and H. B. Bohidar¹,²*

¹School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
²Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
³Department of Chemistry, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
⁴Advanced Instrumentation Research and Facility, Jawaharlal Nehru University, New Delhi,

Determination of Quantum Yield: QY was determined using DAPI (4',6-Diamidino-2-Phenylindole, Dilactate) as the reference sample (QYr in water = 43%). QY of the samples were calculated using the following formula,

\[QY = \frac{(F \times A \times QY_r)}{(F_r \times A_r)} \]

where F and A represents the integrated fluorescence intensity and absorbance of the sample and Fr and Ar represents the corresponding reference values, which yields QY = 40%. Yes, Authors tested the fluorescence spectra of the samples over a week and did not find significant change.

Fig S1. Band gap determination from Tauc plot.
Fig S2. TEM EDX images from DNA derived carbon dots.

Fig S3. DLS correlation function from carbon dot dispersion.
Fig S4. G'' data for carbon dot based DNA hydrogel

Fig S5. Variation of viscoelastic length and power law exponent n’ for DNA-Carbon Dot hydrogel with different DD (C-Dot) concentration.
Fig S6. Variation of change in Gibb’s free energy for DNA-C-Dot hydrogel with different T_{gel}.

\[
\Delta G = \Delta H - T \Delta S
\]
\[
\Delta H = -119.8 \text{ kJ mol}^{-1}
\]
\[
\Delta S = -5.165 \text{ JK}^{-1}
\]

Fig S7. Relative network density of DNA-C-Dot hydrogel with dot (DD) concentration.

$\nu_r(DD) = m_0[DD]$

$m_0 = 1.03$