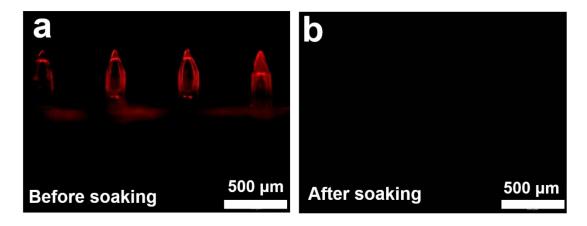
Supporting Information

Therapeutics transdermal delivery through dissolvable gelatin/sucrose film coated on PEGDA microneedle array with improved skin permeability

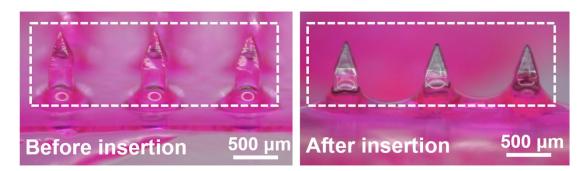
Ya Gao,^{ab} Mengmeng Hou,^{ab} Ruihao Yang,^{ab} Lei Zhang,^c Zhigang Xu,^{ab} Yuejun Kang^{ab*} and Peng Xue ^{ab*}

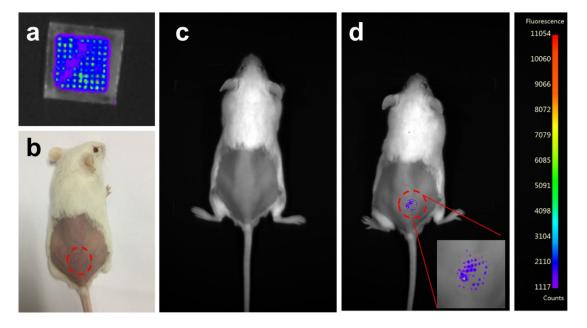
a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.

b Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China.


c Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.

Corresponding authors


xuepeng@swu.edu.cn (P. Xue), yjkang@swu.edu.cn (Y. Kang)


Figure S1. Viability of HUVECs after incubation with the soaking solution of microneedle patch (0.5 cm^2) for 24 h.

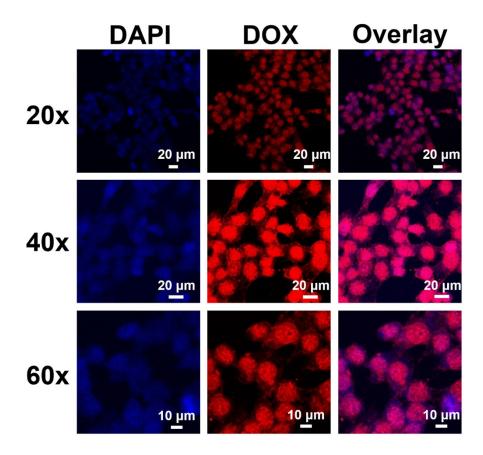

Figure S2.Fluorescence images of RhB/film-coated microneedles (a) before and (b) after incubation in DI water for 24 h.

Figure S3. Bright field images of RhB/film-coated microneedles before and after the insertion into porcine skin.

Figure S4. RhB/film-coated microneedles for skin penetration on a live mouse model. (a) Fluorescence image of a RhB/film-coated microneedle patch; (b) a live mouse with hair-shaved back skin for microneedle insertion; *in vivo* fluorescence images of the mouse (c) before and (d) after treatment with RhB/film-coated microneedles for 5 min.

Figure S5. Fluorescence images of 4T1 cells after incubation with the soaking solution of DOX/film-coated microneedles for 4 h under various magnifications.