SUPPORTING INFORMATION

for

Perylene diimide–Cu²⁺ based fluorescent nanoparticles for detection of spermine in clinical, food samples: A step toward development of diagnostic kit as POCT tool for spermine

Kapil Kumar^a, Sandeep Kaur^b, Satwinderjit Kaur^b, Gaurav Bhargava^c, Subodh Kumar^a Prabhpreet Singh^{a*}

^aDepartment of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar (Pb) 143 005, India. e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534

^bDepartment of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar (Pb) 143 005, India

^cDepartment of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India.

1.	Spectroscopic analysis of EA-PDI and DGA-PDI	S4-7
	Figure S1a: ¹ H NMR spectrum of EA-PDI.	
	Figure S1b: ¹ H NMR spectrum of EA-PDI after D ₂ O exchange.	
	Figure S1c: ¹³ C NMR spectrum of EA-PDI.	
	Figure S1d: ¹ H- ¹ H COSY spectrum of EA-PDI.	
	Figure S1e: HSQC spectrum of EA-PDI.	
	Figure S2a: ¹ H NMR spectrum of DGA-PDI.	
	Figure S2b: ¹³ C NMR spectrum of DGA-PDI.	
2.	Cyclic voltammetric studies of EA-PDI	S7
	Figure S3: Cyclic voltammogram of EA-PDI recorded in dichloromethane (vs. Ag/AgCl).	
3.	Density Functional Theory (DFT) studies of EA-PDI	S8
	Figure S4: Molecular orbital analysis of EA-PDI with HOMO and LUMO presentation and energy	
	optimized structure of EA-PDI showing twisting of naphthalene core.	
4.	Spectroscopic response of EA-PDI towards Cu ²⁺ ions	S8-12
	Figure S5. (a) Absorbance changes and (b) bar graph of EA-PDI ($10 \mu M$) on the addition of various metal	
	ions (100 μM) recorded in HEPES-CH ₃ CN (1:1, pH 7.2) solution.	
	Figure S6. (a) Fluorescence changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various	
	metal ions (100 μM) recorded in HEPES–CH ₃ CN (1:1, pH 7.2) solution.	
	Figure S7. (a) Absorbance profile of EA-PDI (10 µM) recorded in HEPES buffer–CH ₃ CN (1:1, v/v, pH	
	7.2) on incremental addition of Cu^{2+} ions; (b) Job's plot of EA-PDI with increasing mole fraction of Cu^{2+}	
	showing formation of 1:1 complex using UV-Vis Spectroscopy.	
	Figure S8. (a) Fluorescence profile of EA-PDI ($0.05 \ \mu$ M) recorded in HEPES buffer–CH ₃ CN (1:1, v/v,	
	pH 7.2) on incremental addition of Cu^{2+} ions; (b) Benesi-Hildebrand plot of EA-PDI in the presence of	
	increasing concentrations of Cu ²⁺ ions.	
	Figure S9 . Plot of fluorescence intensity (FI) of EA-PDI ($0.05 \ \mu$ M, 1:1 H ₂ O/CH ₃ CN vs Cu ²⁺ ions.	
	Figure S10. (a) Absorbance changes and (b) bar graph of EA-PDI (10 μ M) on the addition of various	
	metal ions (100 μ M) and subsequently Cu ²⁺ ions (20 μ M) was added to check the interference and	
	selectivity. All spectra were recorded in HEPES-CH ₃ CN (1:1, pH 7.2) solution.	
	Figure S11. (a) Emission changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various metal	
	ions (0.5 μ M) and subsequently Cu ²⁺ ions (0.1 μ M) was added to check the interference and selectivity.	
	All spectra were recorded in HEPES–CH ₃ CN (1:1, pH 7.2) solution. $\lambda_{ex} = 490$ nm, slit: 10 nm/7 nm.	
	Table S1: Photophysical parameters calculated for EA-PDI , EA-PDI \cap Cu ²⁺ complex and EA-PDI \cap Cu ²⁺	
	complex+spermine	
	Figure S12. Fluorescence life time changes in (a) EA-PDI (10 µM) (b) EA-PDI (0.05 µM) on the addition	
	of Cu ²⁺ ions and subsequently spermine was added. All spectra were recorded in HEPES–CH ₃ CN (1:1, pH	
	7.2) solution.	
5.	Spectroscopic response of DGA-PDI towards Cu ²⁺ ions	S13
	Figure 13. (a) Absorbance (10 µM) and (b) fluorescence spectra (0.05 µM) of DGA-PDI recorded on	
	incremental addition of Cu ²⁺ ions; [Inset] ratiometric plot between A_{523nm}/A_{620nm} versus concentrations of	

	Cu ²⁺ ; [Inset] I-I _o versus concentrations of Cu ²⁺ for calculating the lowest detection limit.	
	Figure S14. (a) Absorbance profiles of DGA-PDI (10 µM) recorded in HEPES buffer–CH ₃ CN (1:1, v/v,	
	pH 7.2) on incremental addition of Cu ²⁺ ions; (b) Benesi-Hildebrand plot of DGA-PDI in the presence of	
	increasing concentrations of Cu^{2+} ions.	
6.	Detection of Cu ²⁺ using TLC strip	S14
	Figure S15. Colorimetric and fluorescent photographs of TLC strips coated with EA-PDI solution on	
	addition of Cu ²⁺ ions; (I) (a) TLC strip coated with EA-PDI ($2x10^{-5}$ M); TLC strips on addition of 5 µL of	
	different concentration of Cu^{2+} ions (b) $5x10^{-6}$ M (c) $1x10^{-5}$ M (d) $2x10^{-5}$ M (e) $3x10^{-5}$ M and (f) $4x10^{-5}$ M;	
	(II) (a) TLC strip coated with EA-PDI ($1x10^{-5}$ M); TLC strips on addition of 5 µL of different concentration	
	of Cu^{2+} ions (b) $5x10^{-7}$ M (c) $1x10^{-6}$ M (d) $5x10^{-6}$ M (e) $1x10^{-5}$ M and (f) $2x10^{-5}$ M [The size of each TLC	
	strip is 1 cm ²].	
7.	Detection of Cu ²⁺ in biofluids (Blood Serum and Urine)	S15-16
	Figure S16. (a,c) Absorption and (b,d) fluorescence spectra of EA-PDI after the incremental addition of	
	Cu^{2+} ions recorded in HEPES buffer-CH ₃ CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and	
	(c,d) containing 10% blood serum]; inset in (a-d): table showing recovery of Cu^{2+} ions in spiked urine and	
	blood serum samples.	
	Figure S17. (a,c) Absorption and (b,d) fluorescence profile of EA-PDI after the incremental addition of	
	Cu^{2+} ions recorded in HEPES buffer-CH ₃ CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and	
	(c,d) containing 10% blood serum] along with recovery of spiked samples shown as colored points in each	
	graph.	
8.	Effect of pH on EA-PDI and EA-PDI∩Cu ²⁺	S17
	Figure S18. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI (10 μ M)	
	recorded in CH ₃ CN:H ₂ O (1:1, v/v); $\lambda_{ex} = 490$ nm, slit: 15 nm/2.5 nm.	
	Figure S19. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI-Cu ²⁺ (10	
	μ M) recorded in CH ₃ CN:H ₂ O (1:1, v/v); λ_{ex} = 490 nm, slit: 15 nm/2.5 nm.	
9.	Spectroscopic response of EA-PDI or DGA-PDI∩Cu ²⁺ towards spermine	S18-21
	Figure S20. (a) Job's plot (absorbance) of EA-PDI- Cu^{2+} complex with spermine showing 1:1	
	stoichiometry; (b) Stern-Volmer (S-V) plot between I/I _o versus [spermine]; (c) Job's plot (fluorescence) of	
	EA-PDI-Cu ²⁺ complex with spermine showing 1:1 stoichiometry recorded in HEPES-CH ₃ CN (1:1, pH	
	7.2) solution.	
	Figure S21. (a,b) Absorbance changes and (c,d) bar graph of EA-PDI ($10 \mu M$) on the addition of various	
	amines and anions (100 μ M) respectively and subsequently Cu ²⁺ ions (20 μ M) was added to check the	
	interference and selectivity. All spectra were recorded in HEPES-CH ₃ CN (1:1, pH 7.2) solution. For Panel	
	(a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C),	
	diethylenetriamine (D), 1,8-diaminoctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine	
	(H), N,N'-dimethyl ethylenediamine (I), spermidine (J). All these spectra were measured after 1-hour time	
	gap.	
	Figure S22. (a,b) Emission changes and (c,d) bar graph of EA-PDI (0.05 µM) on the addition of various	
	amines and anions (0.5 μ M) respectively and subsequently Cu ²⁺ ions (0.1 μ M) was added to check the	
	interference and selectivity. All spectra were recorded in HEPES-CH ₃ CN (1:1, pH 7.2) solution. For Panel	
	(a-d) Sp = Spermine; $L = EA-PDI$; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C),	
	diethylenetriamine (D), 1,8-diaminoctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine	
	(H), N,N'-dimethyl ethylenediamine (I), spermidine (J). $\lambda_{ex} = 490$ nm, slit: 10 nm/7 nm. All these spectra	
	were measured after 1-hour time gap.	
	Eigune 622 (a) A basehones apportuna $f DC A BDIO(C, 2^{+} a constant of a station of a constant in UEDEC$	
	Figure S25. (a) Absorbance spectra of DGA-PDI ICU ² complex showing detection of spermine in HEPES hyperbolic terms in the spectra of DGA-PDI ICU ² complex showing detection of spermine in HEPES α and α is a spectra of α and α and α is a spectra of α and α and α is a spectra of α and α	
	A_{11} spectra were recorded after time interval of 1 hour	
	An openia were recorded after time interval of 1 noul. Figure S24 (a) Elucroscence spectra of DCA DDI $(Cu^{2+}$ complex charging detection of many interval.	
	HEPES buffer_CH_CN 7.3 v/v nH 7.2 solution: (b) Plot between A /A versus concentrations of	
	(0) FIGURE 10 UN 7.5, v/v , pri 7.2 Solution, (0) FIGURE 10 A _{620nm} /A _{523nm} versus concentrations of a sparmine $\lambda = 400$ nm slit 10 nm/10 nm All spaces were recorded after time interval of 1 hour	
10	spenning, $n_{ex} = 470$ mm, snt. 10 mm 10 mm. An spectra were recorded after time interval of 1 flour.	\$22.22
10.	Figure \$25 (a b) Absorption and (c d) fluorescence spectra a of FNS after the incremental addition of	522-23
	spermine recorded in HEPES huffer-CH ₂ CN [1:1] v/v nH 7.2 containing (a.c.) 10% urine solution and	
	(b,d) containing 10% blood serum]: (Inset of a-c) graph showing the recovery of spermine	
	Table S2 : Recovery of spermine using EA-PDI $(Cu^{2+}$ in spiked urine and blood serum samples recorded	
	in HEPES buffer-CH ₃ CN [1:1, v/v, pH 7.2.	
11.	Colorimetric diagomstic kit using EA-PDI∩Cu ²⁺	S24
-	Figure S26. Fluorescence ($\lambda_{ex} = 365$ nm) images of well plate containing ENS (10 µM) alone (1) and ENS	
	+ different concentrations of spermine viz. 1 μ M (2); 2 μ M (3): 3 μ M (4): 5 μ M (5): 7 μ M (6): 10 μ M (7):	
1	15 uM (8): 20 uM (0): 20 uM (10): 40 uM (11) and 60 uM (12)	

12.	Detection of spermine using TLC strip coated with EA-PDI∩Cu ²⁺					
	Figure S27. Detection of spermine by using EA-PDI+Cu ²⁺ complex coated paper strips.					
	Figure S28. Colorimetric (50 µM) photographs of TLC strips coated with complex solution on addition of					
	spermine; (II) (a) TLC strip coated with complex; TLC strips on addition of 5 µL of different concentration					
	of spermine (b) $1x10^{-6}$ M (c) $5x10^{-6}$ M (d) $1x10^{-5}$ M and (e) $2x10^{-5}$ M [The size of each TLC strip is 1 cm ²].					
13.	Detection of spermine vapors in well plate using EA-PDI∩Cu ²⁺	S25				
	Figure S29. UV-Vis images of well plates kept at refrigeration conditions containing fish (F1-F3) and					
	mushroom (M1-M3) samples in three wells of first row and rest of the wells in upper and lower images					
	are filled with 10, 20 and 50 μ M concentration of EA-PDI +Cu ²⁺ complex (1:2) solution, respectively.					
14.	Detection of spermine in solution form using EA-PDI∩Cu ²⁺	S26-27				
	Figure S30. Absorbance spectra of complex showing detection of spermine in test samples collected from					
	(a) fish and (b) mushroom; [Inset of (a) and (b)] ratiometric plot between A_{620nm}/A_{523nm} as function of time;					
	Color images of well plate containing complex (1) and complex +test samples collected at different time					
	interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8);					
	84 (9); 96 (10); 108 (11) and 120 (12).					
	Figure S31. Fluorescence spectra of complex showing detection of spermine in test samples collected from					
	(a) fish and (b) mushroom; [Inset of (a) and (b)] plot of FI (I/I_o) as function of time; Color images of well					
	plate containing complex (1) and complex +test samples collected at different time interval (in hour) from					
	(c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11)					
	and 120 (12).					
15.	MTT assay and live cell imaging of Cu ²⁺ using EA-PDI	S27-28				
	Figure S32. Cell viability values (%) tested by an MTT assay using MG-63 cells.					
	Figure S33: Brightfield image of MG-63 cells incubated with (a) EA-PDI; (d,g) EA-PDI– Cu^{2+} ;					
	fluorescence images of MG-63 cells incubated with (b) EA-PDI (1 μ M) and (c) EA-PDI (5 μ M) for 30					
	min; fluorescence image of MG-63 cells incubated with EA-PDI (1 μ M) for 30 min and then incubated					
	with (e) Cu^{2+} (4 μ M) and (h) Cu^{2+} (8 μ M) for another 30 min; fluorescence image of MG-63 cells incubated					
	with EA-PDI (5 μ M) for 30 min and then incubated with (f) Cu ²⁺ (20 μ M) and (i) Cu ²⁺ (40 μ M) for another					
	30 min.					
16.	Experimental Section	S29-31				
	Table S3: Comparison of the present manuscript with literature reports	S32				

1. Spectroscopic analysis of EA-PDI and DGA-PDI

Figure S1a: ¹H NMR spectrum of EA-PDI.

Figure S1b: ¹H NMR spectrum of EA-PDI after D₂O exchange.

Figure S1c: ¹³C NMR spectrum of EA-PDI.

Figure S1d: ¹H-¹H COSY spectrum of EA-PDI.

Figure S1e: HSQC spectrum of EA-PDI.

Figure S2a: ¹H NMR spectrum of DGA-PDI.

Figure S2b: ¹³C NMR spectrum of DGA-PDI.

2. Cyclic Voltammetric studies of EA-PDI

Figure S3: Cyclic voltammogram of EA-PDI recorded in dichloromethane (vs. Ag/AgCl).

3. Density Functional Theory (DFT) studies of EA-PDI

Figure S4: Molecular orbital analysis of **EA-PDI** with HOMO and LUMO presentation and energy optimized structure of **EA-PDI** showing twisting of naphthalene core.

4. Spectroscopic response of EA-PDI towards Cu²⁺ ions

Figure S5. (a) Absorbance changes and (b) bar graph of **EA-PDI** (10 μ M) on the addition of various metal ions (100 μ M) recorded in HEPES–CH₃CN (1:1, pH 7.2) solution.

Figure S6. (a) Fluorescence changes and (b) bar graph of **EA-PDI** (0.05 μ M) on the addition of various metal ions (100 μ M) recorded in HEPES–CH₃CN (1:1, pH 7.2) solution.

Figure S7. (a) Absorbance profile of **EA-PDI** (10 μ M) recorded in HEPES buffer–CH₃CN (1:1, v/v, pH 7.2) on incremental addition of Cu²⁺ ions; (b) Job's plot of **EA-PDI** with increasing mole fraction of Cu²⁺ showing formation of 1:1 complex using UV-Vis Spectroscopy.

Figure S8. (a) Fluorescence profile of **EA-PDI** (0.05 μ M) recorded in HEPES buffer–CH₃CN (1:1, v/v, pH 7.2) on incremental addition of Cu²⁺ ions; (b) Benesi-Hildebrand plot of **EA-PDI** in the presence of increasing concentrations of Cu²⁺ ions.

Figure S9. Plot of fluorescence intensity (FI) of EA-PDI (0.05 µM, 1:1 H₂O/CH₃CN vs Cu²⁺ ions.

Figure S10. (a) Absorbance changes and (b) bar graph of **EA-PDI** (10 μ M) on the addition of various metal ions (100 μ M) and subsequently Cu²⁺ ions (20 μ M) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution.

Figure S11. (a) Emission changes and (b) bar graph of **EA-PDI** (0.05 μ M) on the addition of various metal ions (0.5 μ M) and subsequently Cu²⁺ ions (0.1 μ M) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution. $\lambda_{ex} = 490$ nm, slit: 10 nm/7 nm.

Sr.	Photophysical parameter	EA-PDI	EA-PDI ∩Cu ²⁺	EA-PDI ∩Cu²+
No.			complex	complex+spermine
1.	Quantum Yield	11.5%	30.1%	11.2%
2.	Fluorescence life time	0.35 ns	0.7 ns	0.34 ns
3.	Radiative decay constant (K _r)	0.32x10 ⁹ /sec	0.43x10 ⁹ /sec	0.32x10 ⁹ /sec
4.	Non-radiative decay constant (K _{nr})	2.52x10 ⁹ /sec	0.184x10 ⁹ /sec	2.61x10 ⁹ /sec

Table S1: Photophysical parameters calculated for **EA-PDI**, **EA-PDI** \cap Cu²⁺ complex and **EA-PDI** \cap Cu²⁺ complex+spermine

Figure S12. Fluorescence life time changes in (a) **EA-PDI** (10 μ M) (b) **EA-PDI** (0.05 μ M) on the addition of Cu²⁺ ions and subsequently spermine was added. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution.

5. Spectroscopic response of DGA-PDI towards Cu²⁺ ions

Figure 13. (a) Absorbance (10 μ M) and (b) fluorescence spectra (0.05 μ M) of **DGA-PDI** recorded on incremental addition of Cu²⁺ ions; [Inset] ratiometric plot between A_{523nm}/A_{620nm} versus concentrations of Cu²⁺; [Inset] I-I₀ versus concentrations of Cu²⁺ for calculating the lowest detection limit.

Figure S14. (a) Absorbance profiles of **DGA-PDI** (10 μ M) recorded in HEPES buffer–CH₃CN (1:1, v/v, pH 7.2) on incremental addition of Cu²⁺ ions; (b) Benesi-Hildebrand plot of **DGA-PDI** in the presence of increasing concentrations of Cu²⁺ ions.

6. Detection of Cu²⁺ using TLC strip

Figure S15. Colorimetric and fluorescent photographs of TLC strips coated with **EA-PDI** solution on addition of Cu^{2+} ions; (I) (a) TLC strip coated with **EA-PDI** ($2x10^{-5}$ M); TLC strips on addition of 5 µL of different concentration of Cu^{2+} ions (b) $5x10^{-6}$ M (c) $1x10^{-5}$ M (d) $2x10^{-5}$ M (e) $3x10^{-5}$ M and (f) $4x10^{-5}$ M; (II) (a) TLC strip coated with **EA-PDI** ($1x10^{-5}$ M); TLC strips on addition of 5 µL of different concentration of Cu^{2+} ions (b) $5x10^{-6}$ M (c) $1x10^{-6}$ M (e) $1x10^{-5}$ M and (f) $2x10^{-5}$ M [The size of each TLC strip is 1 cm²].

7. Detection of Cu²⁺ in biofluids (Blood Serum and Urine)

Figure S16. (a,c) Absorption and (b,d) fluorescence spectra of **EA-PDI** after the incremental addition of Cu^{2+} ions recorded in HEPES buffer-CH₃CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum]; inset in (a-d): table showing recovery of Cu^{2+} ions in spiked urine and blood serum samples.

Figure S17. (a,c) Absorption and (b,d) fluorescence profile of **EA-PDI** after the incremental addition of Cu^{2+} ions recorded in HEPES buffer-CH₃CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum] along with recovery of spiked samples shown as colored points in each graph.

8. Effect of pH on EA-PDI and EA-PDI∩Cu²⁺

Figure S18. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of **EA-PDI** (10 μ M) recorded in CH₃CN:H₂O (1:1, v/v); $\lambda_{ex} = 490$ nm, slit: 15 nm/2.5 nm.

Figure S19. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of **EA-PDI**– Cu^{2+} (10 µM) recorded in CH₃CN:H₂O (1:1, v/v); $\lambda_{ex} = 490$ nm, slit: 15 nm/2.5 nm.

9. Spectroscopic response of EA-PDI \cap Cu²⁺ towards spermine

Figure S20. (a) Job's plot (absorbance) of EA-PDI-Cu²⁺ complex with spermine showing 1:1 stoichiometry; (b) Stern-Volmer (S-V) plot between I/I_o versus [spermine]; (c) Job's plot (fluorescence) of EA-PDI-Cu²⁺ complex with spermine showing 1:1 stoichiometry recorded in HEPES-CH₃CN (1:1, pH 7.2) solution.

Spermine [M]

Figure S21. (a,b) Absorbance changes and (c,d) bar graph of **EA-PDI** (10 μ M) on the addition of various amines and anions (100 μ M) respectively and subsequently Cu²⁺ ions (20 μ M) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminoctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine (H), N,N'-dimethyl ethylenediamine (I), spermidine (J). All these spectra were measured after 1-hour time gap.

Figure S22. (a,b) Emission changes and (c,d) bar graph of **EA-PDI** (0.05 μ M) on the addition of various amines and anions (0.5 μ M) respectively and subsequently Cu²⁺ ions (0.1 μ M) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminoctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine (H), N,N'-dimethyl ethylenediamine (I), spermidine (J). $\lambda_{ex} = 490$ nm, slit: 10 nm/7 nm. All these spectra were measured after 1-hour time gap.

Figure S23. (a) Absorbance spectra of **DGA-PDI** \cap Cu²⁺ complex showing detection of spermine in HEPES buffer-CH₃CN 7:3, v/v, pH 7.2 solution; (b) Plot of A_{616nm} and A_{522nm} versus concentrations of spermine. All spectra were recorded after time interval of 1 hour.

Figure S24. (a) Fluorescence spectra of **DGA-PDI** \cap Cu²⁺ complex showing detection of spermine in HEPES buffer-CH₃CN 7:3, v/v, pH 7.2 solution; (b) Plot between A_{620nm}/A_{523nm} versus concentrations of spermine; $\lambda_{ex} = 490$ nm, slit: 10 nm/10 nm. All spectra were recorded after time interval of 1 hour.

10. Detection of spermine in biofluids using EA-PDI \cap Cu²⁺ (Blood Serum and Urine)

Figure S25. (a,b) Absorption and (c,d) fluorescence spectra e of **ENS** after the incremental addition of spermine recorded in HEPES buffer-CH₃CN [1:1, v/v, pH 7.2, containing (a,c) 10% urine solution and (b,d) containing 10% blood serum]; (Inset of a-c) graph showing the recovery of spermine

			Spermine				
Techniques	Samples	Spermine added (µM)	Spermine found (µM)	% age recovery			
		5.0	5.0	100			
	Blood Serum	15.0	15.0	100			
		25.3	25.0	98.81			
		30.9	30.0	97.08			
UV-Vis		2.0	2.0	100			
		11.5	12.0	104.34			
	Urine	14.8	15.0	101.35			
		40.0	40.0	100			
		0.0103	0.01	96.61			
	Blood	0.05	0.05	100			
	Serum	0.1545	0.15	97.08			
		0.3	0.3	100			
Fluorescence		0.0255	0.025	98.03			
		0.105	0.1	95.69			
	Urine	0.2	0.2	100			
		0.4	0.4	100			

Table S2: Recovery of spermine using **EA-PDI** \cap **Cu**²⁺ in spiked urine and blood serum samplesrecorded in HEPES buffer-CH₃CN [1:1, v/v, pH 7.2.

11. Colorimetric diagomstic kit using EA-PDI∩Cu²⁺

Figure S26. Fluorescence ($\lambda_{ex} = 365 \text{ nm}$) images of well plate containing ENS (10 μ M) alone (1) and ENS + different concentrations of spermine *viz.* 1 μ M (2); 2 μ M (3); 3 μ M (4); 5 μ M (5); 7 μ M (6); 10 μ M (7); 15 μ M (8); 20 μ M (9); 30 μ M (10); 40 μ M (11) and 60 μ M (12).

12. Detection of spermine using TLC strip coated with EA-PDI∩Cu²⁺

Figure S27. Detection of spermine by using EA-PDI+Cu²⁺ complex coated paper strips.

Figure S28. Colorimetric (50 μ M) photographs of TLC strips coated with complex solution on addition of spermine; (II) (a) TLC strip coated with complex; TLC strips on addition of 5 μ L of different concentration of spermine (b) 1x10⁻⁶ M (c) 5x10⁻⁶ M (d) 1x10⁻⁵ M and (e) 2x10⁻⁵ M [The size of each TLC strip is 1 cm²].

13. Detection of spermine vapors in well plate using EA-PDI \cap Cu²⁺

Figure S29. UV-Vis images of well plates kept at refrigeration conditions containing fish (F1-F3) and mushroom (M1-M3) samples in three wells of first row and rest of the wells in upper and lower images are filled with 10, 20 and 50 μ M concentration of **EA-PDI**+Cu²⁺ complex (1:2) solution, respectively.

14. Detection of spermine in solution form using EA-PDI∩Cu²⁺

Figure S30. Absorbance spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] ratiometric plot between A_{620nm}/A_{523nm} as function of time; Color images of well plate containing complex (1) and complex +test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).

Figure S 31. Fluorescence spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] plot of FI (I/I_o) as function of time; Color images of well plate containing complex (1) and complex +test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).

15. MTT assay and live cell imaging of Cu²⁺ using EA-PDI

Figure S32. Cell viability values (%) tested by an MTT assay using MG-63 cells.

Figure S33: Brightfield image of MG-63 cells incubated with (a) **EA-PDI**; (d,g) **EA-PDI**–Cu²⁺; fluorescence images of MG-63 cells incubated with (b) **EA-PDI** (1 μ M) and (c) **EA-PDI** (5 μ M) for 30 min; fluorescence image of MG-63 cells incubated with **EA-PDI** (1 μ M) for 30 min and then incubated with (e) Cu²⁺ (4 μ M) and (h) Cu²⁺ (8 μ M) for another 30 min; fluorescence image of MG-63 cells incubated with (f) Cu²⁺ (20 μ M) and (i) Cu²⁺ (40 μ M) for another 30 min.

16. Experimental Section

General methods: Chemicals and solvents were of reagent grade and used without further purification. All reactions were performed under N_2 . CH₃CN, CHCl₃ and other solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series devices. Chromatographic purification was done with silica gel 60-120 mesh. TLC was performed on aluminium sheets coated with silica gel 60 F254 (Merck, Darmstadt). PDI **1** was synthesized according to literature procedures.

Instrumentation: ¹H and ¹³C NMR spectra were recorded on a Bruker-AVANCE-II FT-NMR AL400 spectrometer using CDCl₃ as solvent. The peak values were obtained as ppm (δ), and referenced to tetramethylsilane (TMS) for ¹H NMR spectroscopy and the residual solvent signal for ¹³C NMR spectroscopy. Data are reported as follows: chemical shifts in ppm, coupling constant J in Hz; multiplicity (s = singlet, bs = broad singlet, t = triplet, q = quartet, m = multiplet). The absorption spectra were recorded on a SHIMADZU-2450 spectrophotometer equipped with a Peltier system to control the temperature. Quartz cells of 1 cm in length were used for sample measurements. The spectral bandwidth and scan rate were fixed at 2 nm and 140 nm min⁻¹ respectively. Fluorescence titrations were performed on a PerkinElmer LS-55 fluorescence spectrophotometers (slit width: excitation = 10 nm, emission = 7 nm) with excitation at 490 nm, unless otherwise stated. Quartz cells of 1 cm in length were used for sample measurements. FE-SEM measurements were performed on a ZEISS SUPRA^{TM55} microscope operating at an acceleration voltage of 10 kV with a tungsten filament as the electron source. DLS measurements were performed at (25.0±0.1) °C by using a light-scattering apparatus (Zetasizer Nano ZS Malvern Instrument Ltd., UK). Solutions were filtered through a Millipore membrane filter (Acrodisc syringe filter, 0.45 µm Supor membrane) before measurements. The samples were thermally equilibrated for 10 min before each measurement, and an average of 10 measurement runs were considered to be data. The temperature was controlled to an accuracy of ± 0.1 °C by using an inbuilt Peltier device. Data was analyzed by using standard algorithms.

Preparation of EA-PDI \cap Cu²⁺ complex solution: 10 µM solution of EA-PDI for UV-Vis studies and 0.05 µM solution of EA-PDI for fluorescence studies were prepared in HEPES buffer–CH₃CN (1:1), v/v, pH 7.2 solution. These solution were treated with 2 equivalents of Cu(ClO₄)₂ and mixtures were allowed to stand for 1h at room temperature for equilibrium and then various UV-Vis, fluorescence, microscopic and light scattering measurements were taken. Cell culture. Human Osteosarcoma MG-63 cell line was purchased from National Centre for Cell Science, Pune (India). Cells was grown routinely in DMEM (Dulbecco's Modified Eagle's Medium) supplemented with 10% (v/v) Fetal Bovine Serum (Biological Industries) and 1% antibiotic-antimycotic solution. The cells were cultured and maintained in CO_2 incubator in a 95% humidified atmosphere, 5% CO₂ and at 37°C in a tissue culture flask. Two wells served as control; cells of two wells were treated each with **EA-PDI** (1 and 5 μ M prepared in CH₃CN:media, 5:95); Cu^{2+} ions (40 and 400 μ M prepared in CH₃CN: media, 5:95) treatment was given to cells of two wells; 4 wells were treated with EA-PDI (2 wells each with 1 and 5 μ M), cells of 8 wells were treated with EA-PDI (4 wells each with 1 and 5 μ M) for 30 minutes followed by Cu²⁺ ions (2 wells each with 4 and 8 µM; 20 and 40 µM); cells of another 8 wells were treated with EA-PDI (2 wells each with 1 and 5 μ M) for 30 minutes followed by Cu²⁺ ions (2 wells each with 4 and 8 μ M; 20 and 40 μ M) followed by treatment with spermine (16 and 32 μ M; 80 and 160 μ M). The cells were trypsinized and seeded in 24-well plates (1×10^5 cells/well) by placing 12 mm coverslip in each well. MG-63 cells were washed twice with 1xPBS and fixed with 4% paraformaldehyde for 10 minutes. After fixation, the cells were washed thrice with 1xPBS. The coverslips containing cells were mounted on the glass slides with anti-fading reagent (Fluoromount; Sigma). Finally, the images were captured by using Nikon A1R Laser Scanning Confocal Microscope system with an excitation of 490 nm. Imaging was performed with a 60x oil-emersion objective lens.

MTT Assay: The test sample was used to measure its cytotoxicity in Human Osteosarcoma MG-63 cell line using MTT assay with slight modifications. The cells were seeded at the concentration of 1×10^4 cells/0.1 ml in a 96 well microplates and incubated for 24 hours to allow the adherence of cells. After attachment, the cells were treated with different concentrations of **EA-PDI**. After completion of another 24 hours, 20 µl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added in each well to determine the ability of viable cells to reduce it into purple colored formazan (insoluble) and the cells were incubated for 3-4 hours. Then the supernatant containing MTT solution was removed from each well and finally dissolved the intracellular formazan in 100 µl of dimethyl sulfoxide. The decrease in absorbance was read using a multiwell plate reader (BioTek Synergy HT) at 570 nm.

Sample preparation for TLC Strips. TLC strips were made by dipping 1 cm x 1 cm aluminium sheets coated with silica gel 60 F254 into 20% water–CH₃CN solution of **EA-PDI** (10 μ M for fluorescence; 50 μ M for colorimetric methods) solution followed by drying at room temperature.

Different concentrations of Cu^{2+} or spermine were prepared in aqueous solution. One drop containing 5 µL aliquot of each solution of different concentrations of Cu^{2+} was added on the TLC strips previously coated with **EA-PDI** and dried before visualization under UV lamp. After that one drop containing 5 µL aliquot of each solution of different concentrations of spermine was added on the same area of TLC strip where drop of Cu^{2+} was deposited. After drying, the area where spermine was added again visualized under UV lamp to produce all the images. For control experiment, drop of water alone was also added on the same area of TLC strip where drop of Cu^{2+} was deposited. The TLC strips were then visualized under sunlight or UV irradiation (365 nm lamp).

Preparation of urine and blood serum samples. For estimation of Cu^{2+} and spermine in the clinical samples, blood serum and urine from healthy humans were collected from health center of the university with the consent of donors. The permission for experiments with blood serum and urine samples was accorded by the Institutional Ethical Committee, Guru Nanak Dev University (letter No. 661/HG dated 29-3-2016). We prepared solution of **EA-PDI** and **EA-PDI** \cap Cu²⁺ complex (1:2) in HEPES buffer–CH₃CN (1:1) containing 10% urine or blood serum and independently spiked with known concentrations of Cu²⁺ and spermine, respectively in the range of 0–40 µM concentrations. The absorbance and fluorescence spectra of these Cu²⁺ and spermine spiked solutions were recorded and compared with standard calibration curves.

Detection of biogenic amine (spermine) in food samples. A fresh mushroom and fish samples were procured from a local market and washed with distilled water. Immediately a series of three samples in duplicates for fish and mushroom (2 g/well) were separately kept in 24-well plates and the remaining wells were filled with 1 mL of **EA-PDI** \cap Cu²⁺ complex solution of different concentrations such as 10, 20 and 50 µM. The cover was placed on the well plates and were kept in different storing conditions, i.e., room temperature and frozen temperature (0 °C). The photographs were taken after duration of 3 and 6 days. In another experiment, fish and mushroom samples were separately sealed in a 50 mL glass container and 30 mL of water was added and samples were collected at regular time intervals over a period of 120 h from each sample and injected into HEPES buffer–CH₃CN (1:1, v/v pH 7.2) solution of **EA-PDI** \cap Cu²⁺ complex (1:2). After equilibrium was reached, absorbance (A_{620nm}/A_{523nm}) and fluorescence (I/I_0) responses of **EA-PDI** \cap Cu²⁺ complex was recorded as a function of time.

Table S3:	Comparison	of the pres	sent manuscript	t with literature reports
	F	· · · · ·	r i i i i i i i i i i i i i i i i i i i	

Sr. No.	Citation	Type of system	Solvent system	Detection limits	Live cell imaging	Detection in clinical samples	Detection in Food products (aqueous systems)	Detection in food products (vapour phase)	Solid state detection
	Present manuscript	reryienedin mide and Cu ²⁺ complex based nanoparticl es	HEPES: CH ₃ CN (1:1)	vis) and 90 pM (FI) in aqueous medium	Imaging of Cu ²⁺ and spermine in human Osteosarcom a MG-63 cells	riuman urine and blood serum samples	ed Meat and Mushroo m samples	Meat and Mushroom samples	based detection method (detection limits 0.1 μg/L)
1.	Sensor Actuator B Chem: 2018, 270, 552-561	1-(2- naphthyl)ben zimidazoliu m + SDS	95% HEPES Buffer	6 nM	No	Yes	No	No	No
2.	ACS Sustainable Chem. Eng.2017, 5, 1287–1296	Cu ²⁺ complex of organic nanoparticle s	DMF(1): H ₂ O(99)	36.2 (UV-Vis)	No	No	No	Food articles (Mushroom and meat)	No
3.	Anal. Chem.2014, 86, 1347–1351	Gold nanoparticle s	-	10 ppb	No	Human urine samples	No	No	No
4.	Biosensors and Bioelectronics, 2017, 88, 71-77	Tyrosine-Au NPs	Aqueous system	136 pM (UV- Vis) and 6.2 nM(FI)	No	Human plasma and urine samples	No	No	No
5.	Eur. J. Inorg. Chem.2015, 4437– 4442	Dipicolinic acid hydrazide Schiff base	Aqueous system	7.26 nM (UV)	No	Real samples analysis	No	No	No
6.	Anal. Chem.2016, 88, 7358–7364	Polymer- surfactant complexatio n	Aqueous system	0.33 µM/66 ppb	No	Human urine samples	No	No	No
7.	Sensors and Actuators B 257 (2018) 734–744	amphiphilc thiophene copolymers coated CdTe QDs	PBS Buffer	2.90 nM and 1.66 nM (FI)	No	Human serum samples	No	No	No
8.	Chem. Commun.,2016,52, 1040-1043	Micelles of pyrene and squaraine	Buffered solutions	4.73 μΜ	No	Human Urine samples	No	No	Test strips method
9.	Chem. Commun.,2016,52,10 648-10651		Buffered solutions	0.6 μM (FI)	No	Artificial urine samples	No	No	No
10.	Chem. Asian j. 2017, 12, 890-899	Perylene- SDS self- assemblies for spermine	HEPES:C H ₃ CN(1:1)	27.5nM (FI)	No	urine and blood serum samples	No	No	Test strips method