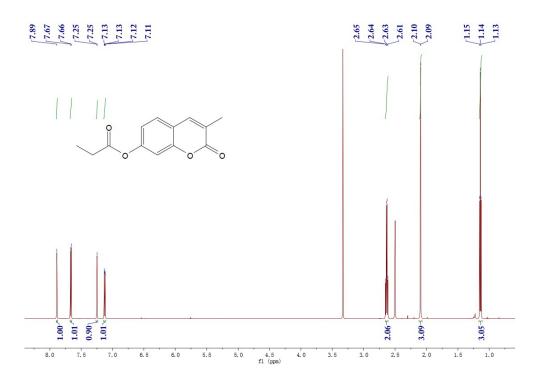
Real-time Monitoring Etoposide Prodrug Activated by Hydrogen Peroxide with Improved Safety

Jiawen Zhu, Jingting Chen, Dongmei Song, Wenda Zhang, Jianpeng Guo, Guiping Cai, Yuhao Ren, Chengying Wan, Lingyi Kong* and Wenying Yu*

*Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.

Corresponding author: cpu_lykong@126.com (L. Kong), ywy@cpu.edu.cn (W. Yu)


Supporting Information Contents

1. Synthetic procedure of 641 (Scheme 31)	52
2. The spectra of 1 H NMR, 13 C NMR (<i>Figure S1-S7</i>)	S3
3. HR-ESI-MS spectrum of 6YT (<i>Figure S8</i>)	S6
4. pH dependence of 6YT in the absence and presence of H_2O_2 (Figu	re
S9)	S7
5. Monitoring of Etoposide release by RP-HPLC (Figure S10)	S7
6. Fluorescence image of compound 6YT activated by different	
concentration of exogenous H ₂ O ₂ (Figure S11)	S8
7. Fluorescence image of compound 6YT activated by endogenous F	1 ₂ O ₂
in different cell lines. (Figure S12-S15)	S9

1. Synthetic procedure of 6YT

Scheme S1. Synthesis of 6YT

2. The spectra of ¹H NMR, ¹³C NMR

Figure S1. ¹H NMR spectrum (600 MHz) of compound **1** in DMSO- d_6 .

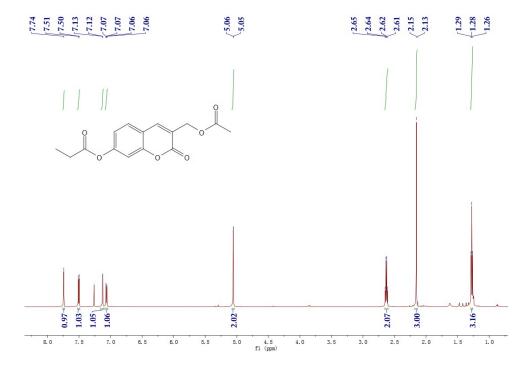
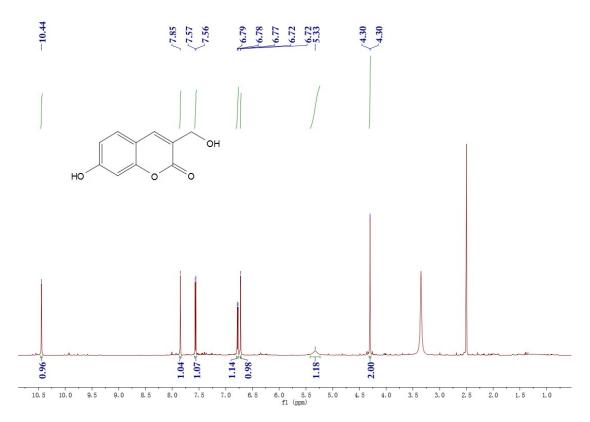
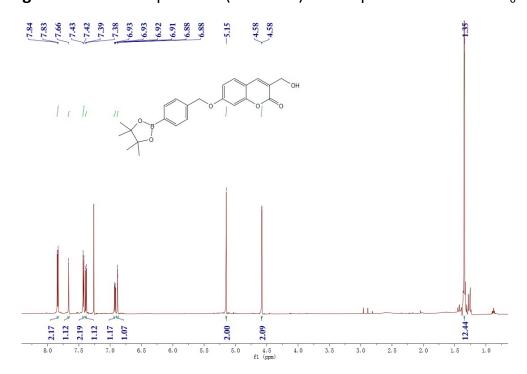
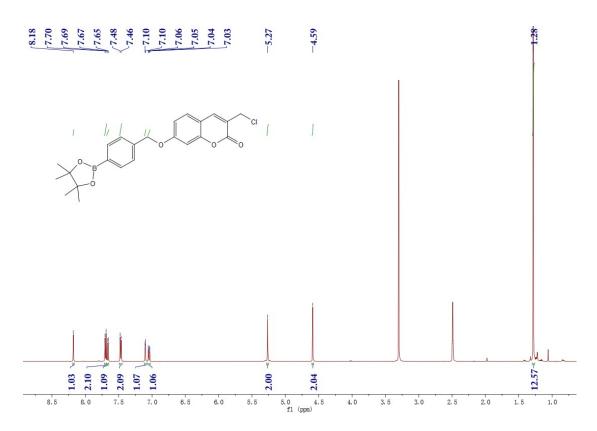
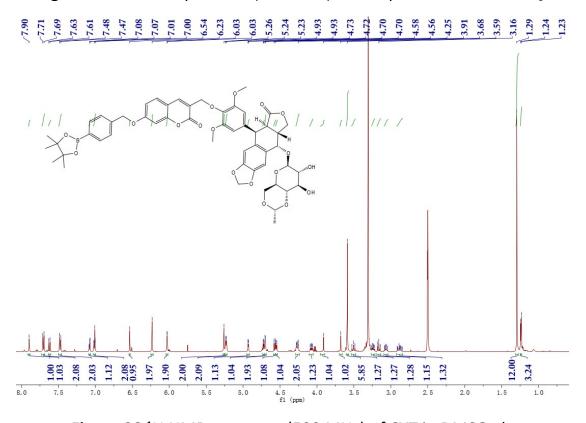



Figure S2.¹H NMR spectrum (600 MHz) of compound 2 in CDCl₃.

Figure S3. ¹H NMR spectrum (600 MHz) of compound **3** in DMSO- d_6 .

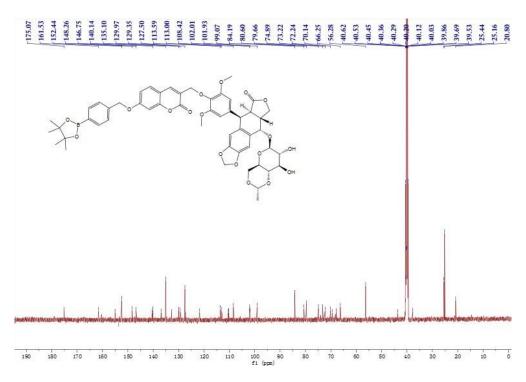

Figure S4.¹H NMR spectrum (600 MHz) of compound 4 in CDCl₃.

Figure S5. ¹H NMR spectrum (500 MHz) of compound **5** in DMSO- d_6 .

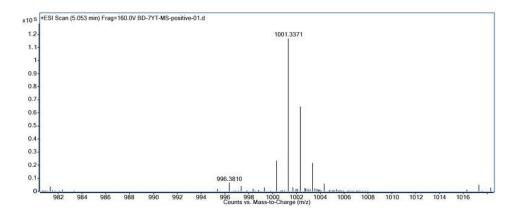
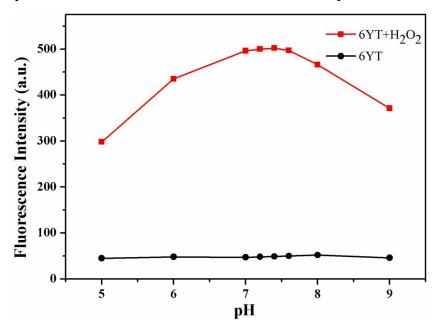


Figure S6. 1 H NMR spectrum (500 MHz) of **6YT** in DMSO- d_{6} .

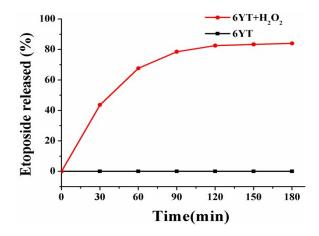
Figure S7. ¹³C NMR spectrum (126 MHz) of **6YT** in DMSO- d_6 .

3. HR-ESI-MS spectrum of compound 6YT

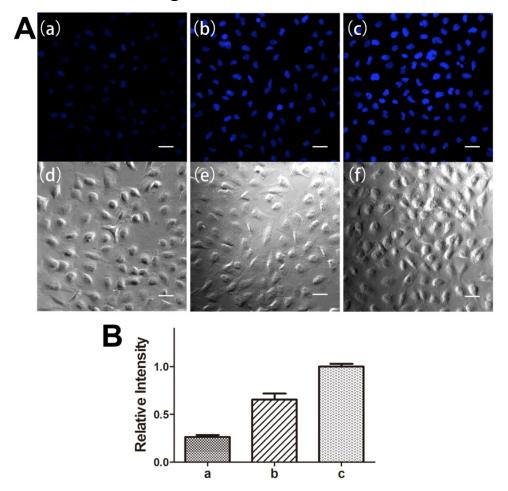


Elemental Composition Calculator

Target m/z:	1001.3371	Result type:	Positive ions	Species:	[M+Na] ⁺	
Elements:		C (0-80); H (0-120); O (0-30); Na (0-5) ; B(0-5)				
Ion Formula		Calculated m/z		PPM Error		
C52H55[11B]NaO18		1001.3374		0.23		


Figure S8.HR-ESI-MS spectrum of compound 6YT.

4. pH dependence of 6YT in the absence and presence of H₂O₂


Figure S9.Fluorescence emission intensity (458 nm) of 6YT (10 μ M) and 6YT + H₂O₂ (300 μ M) to various pH (5.0-9.0) in PBS buffer (10 mM, pH 7.4, 0.1% DMSO) after incubation for 60 min.

5. Monitoring of Etoposide release by RP-HPLC

Figure S10.Etoposide release (%) from **6YT** (100 μ M) in PBS (pH 7.4) in the presence (red squares) or absence (black circles) of H₂O₂ (10mM).

6. Fluorescence image of compound 6YT activated by different concentration of exogenous H₂O₂

Figure S11. (A) Fluorescence images of A549 cell lines treated with increasing concentrations of H_2O_2 (0, 100 and 200 μ M) for 2h after incubated with compound **6YT** (10 μ M) for another 2 h(a-c), and the bright field(d-f). Scale bar = 20 μ m. (B) The relative fluorescence intensities of a-c were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

7. Fluorescence image of compound 6YT activated by endogenous H_2O_2 in different cell lines.

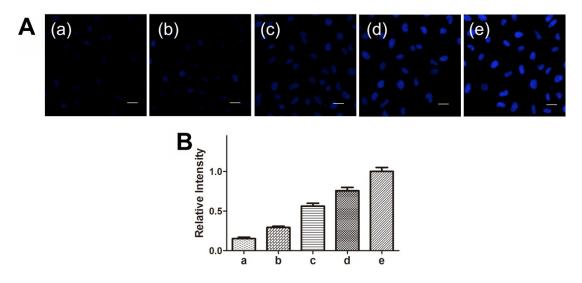


Figure S12. (A) Fluorescence images of A549 cell lines incubated with compound 6YT (10 μ M) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 μ m. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

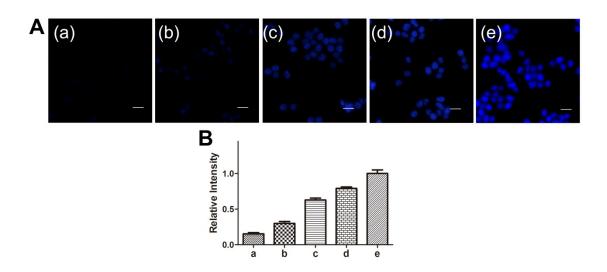
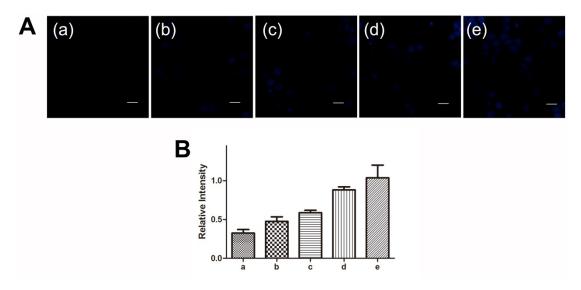



Figure S13. (A) Fluorescence images of HCT-116 cell lines incubated with

compound **6YT** (10 μ M) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 μ m. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

Figure S14. (A) Fluorescence images of MCF-10A cell lines incubated with compound **6YT** (10 μ M) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 μ m. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

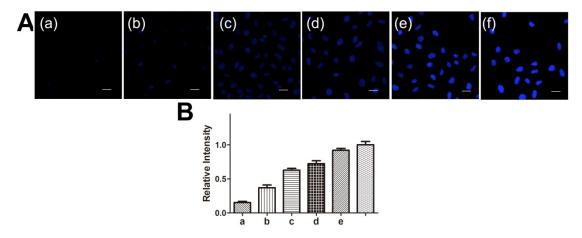


Figure S15. (A) Fluorescence images of A549 cell lines incubated with

increasing concentration of compound **6YT** (a)0 μ M, (b)1.25 μ M, (c)2.5 μ M, (d)5 μ M, (e)10 μ M and (f)20 μ M for 12h. Scale bar = 20 μ m. (B) The relative fluorescence intensity of a-f were measured at three regions in each dish. Error bars represent standard deviation (n = 3).