ARTICLE

Thermo-sensitive Injectable Hydroxypropyl Chitin Hydrogel for The Sustained Salmon Calcitonin Release with Enhanced Osteogenesis and Hypocalcemic Effect

Peng Yu^{‡,a}, Jing Xie^{‡,a}, Yu Chen^a, Jinming Liu^a, Yanpeng Liu^c, Bo, Bi^b, Jun Luo^a, Sheyu Li^d, Xulin Jiang^{*b} and Jianshu Li^{*a}

^{b.} Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China.

^{c.} Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Research center for clinical pharmacy, First affiliated hospital, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, P.R. China.

^{d.} Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, P.R. China

‡ P. Yu and J. Xie are common first authors.

* J. Li (jianshu_li@scu.edu.cn) and X. Jiang (xljiang@whu.edu.cn) are co-corresponding authors.

^{a.} College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Figure S1. Proliferation of MC3T3-E1 cells co-cultured with HPCH and its degraded product at the concentration of (A) 5,000; (B) 1000; (C) 500; (D) 250; (E)125 and (F) 62.5 μ g/mL. ***p<0.001.

Figure S2. In vitro degradation of HA-HPCH in PBS and lysozyme solution (10, 40 and 400 U/mL, respectively).

Figure S3. Zeta potential of HA, sCT, and sCT-HA complex fabricated at different mass ratio.

Figure S4. **Biocompatibility of sCT carriers.** (A) Proliferation and (B) LDH release, (C) morphology (scale bar: 100 μ m) and (D) apoptosis of MC3T3-E1 cells co-cultured with α -MEM complete medium containing HA, HPCH and HA-HPCH. **p*<0.05.

Journal of Materials Chemistry B

Figure S5. Calcium flux of MC3T3-E1 cells co-cultured with different materials. (A) Representative images (scale bar: 100 μm), and (B) the mechanism of enhanced calcium flux.

Figure S6. **Osteogenic differentiation of MC3T3-E1 cells co-cultured with different sCT carriers.** Intracellular ALP activity at (A) day 7 and day 14; (B) calcium concentration at Day 7 and Day 14; (C) images of extracellular calcium deposition (scale bar: 1 mm) and (D) quantitative analysis of mineralized nodules.

Figure S7. Body weight of SD rats subcutaneously injected by control (saline), HPCH and HA-HPCH at different time points.

Figure S8. IgG staining of skins after subcutaneous injection of (A) Control (saline); (B) HPCH solution (2 wt%) and (C) HA-HPCH (2 wt% of HPCH) on Day 28. (scale bar: 200 μm)

Figure S9. H&E staining of major organs (heart, liver, spleen, lung and kidneys) after subcutaneous injection of saline (Control), HPCH solution (2 wt%) and HA-HPCH (2 wt% of HPCH) on Day 28. (scale bar: 200 μm)

Figure S10. Body weight of SD rats subcutaneously injected by Control (saline), sCT, sCT-HA, sCT-HPCH and sCT-HA-HPCH on day 28.

Figure S11. IgG staining of skins after subcutaneous administration of (A) Control (saline); (B) sCT; (C) sCT-HA, (D) sCT-HPCH and (E) sCT-HA-HPCH on Day 28 (scale bar: 200 μm).

Figure S12. H&E staining of major organs (heart, liver, spleen, lung and kidneys) after subcutaneous administration of Control (saline), sCT, sCT-HA, sCT-HPCH, sCT-HA-HPCH on Day 28. (scale bar: 100 μm)

ARTICLE

Journal of Materials Chemistry B

Model	sCT ^a	sCT-HA	sCT-HPCH	sCT-HA-HPCH
Zero-order	R = 0.778 t + 0.278	R = 0.034 t + 0.055	R = 0.030 t + 0.043	R = 0.025 t + 0.022
zero-order	(R ² = 0.733)	(R ² = 0.981)	(R ² = 0.976)	$(R^2 = 0.968)$
	Ln (1-R) = -2.304 t -	Ln (1-R) = -0.089 t +	Ln (1-R) = -0.075 t +	Ln (1-R) = -0.042 t -
First-order	0.231	0.071	0.081	0.022
	(R ² = 0.970)	(R ² = 0.886)	(R ² = 0.725)	(R ² = 0.850)
Higuchi	R = 0.944 t ^{1/2} + 0.070	R = 0.171 t ^{1/2} - 0.058	R = 0.146 t ^{1/2} - 0.049	R = 0.120 t ^{1/2} - 0.052
	(R ² = 0.948)	(R ² = 0.940)	(R ² = 0.896)	(R ² = 0.870)
	Lnln [1/(1-R)] =	Lnln [1/(1-R)] =	Lnln [1/(1-R)] =	Lnln [1/(1-R)] =
Weibull	0.676 ln t +1.161	0.610 ln t – 1.875	0.548 ln t – 1.995	0.531 ln t -2.368
	(R ² = 0.979)	(R ² = 0.876)	(R ² = 0.941)	(R ² = 0.846)
	Ln R = 0.468 ln t +	Ln R = 0.498 ln t +	Ln R = 0.457 ln t +	Ln R = 0.471 ln t +
Ritger-peppas	4.669	2.563	2.474	2.145
	$(R^2 = 0.941)$	(R ² = 0.929)	$(R^2 = 0.910)$	$(R^2 = 0.883)$

Table S1. The kinetics of *in vitro* sCT release.

^a The equation was fitted within 1 day.

R: Cumulative release.

Journal of Materials Chemistry B

Table S2. The	pharmcokinetic	parameters	of in vivo	sCT release.
Table 32. The	pharmeokinetie	parameters	01 111 0100	Ser release.

Group	Cmax (pg/mL)	Tmax (min)	Relative Bioavailabilit y (%)	Cmin	Tmin (h)	Relative pharmacologica l availability (%)
sCT	64.67 ± 9.13	60	-	70.73 ± 0.68	12	-
sCT-HA	97.56 ± 5.32	60	95.43 ± 5.79	66.11 ± 2.52	24	156.77 ± 10.56
sCT-HPCH	84.38 ± 10.07	60	129.44 ± 26.23	75.32 ± 6.26	12	162.49 ± 17.51
sCT-HA-HPCH	91.43 ± 8.96	60	178.64 ± 17.00	65.36 ± 2.34	24	236.12 ± 18.31