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Additional Experimental 

Fourier transform infrared spectra (FTIR) were recorded on a Fourier transform 

spectrometer (TENSOR27, Bruker, Germany). The ζ-potential of different samples 

were determined by a Zetasizer Nano-ZS (Malvern Instruments, UK).

Detection of glucose in real samples. 

The fresh human blood samples were supplied by the local hospital and obtained 

through venipuncture. Some necessary processes were conducted to get the serum 

samples and plasma samples. The blood samples without anticoagulant were rested at 

room temperature until blood clotted. The blood samples were centrifuged at 3000 rpm 

for 5 min to get serum samples. Then, all supernatant serum samples were subjected to 

a 10-fold dilution with PBS before analysis, and a certain concentration of glucose was 

added to prepare the spiked samples. The blood samples with anticoagulant (EDTAK2) 

were centrifuged at 3000 rpm for 5 min to get plasma samples. All supernatant plasma 

samples and whole blood samples were subjected to a 10-fold dilution with PBS when 

analysis. These samples were added into GOx solution (50 µg mL-1) and incubated for 

1 h. Then, 500 μL DSPE-PEG/Ti3C2 (0.1 mg mL-1) containing 5 μg RCDs aqueous 

solution was added into the reaction product. After incubation for 2 h at 37 °C, the 

fluorescence spectra of the mixture were recorded from 550 nm to 800 nm (excited at 

500 nm).

Calculation of quantum yield 

The quantum yield (QY) of the CDs was calculated using rhodamine B (QY = 0.56) 

in ethanol (η = 1.36) as the standard and 550 nm as the excitation wavelength as 
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reference. For calculation of quantum yield, different concentrations of each compound 

were made, all of which had absorbance less than 0.1 at 550 nm. The RCDs were 

dissolved in ethanol (η = 1.36). Their fluorescence spectra were recorded at excitation 

of 500 nm. Then by comparing the integrated fluorescence intensities and the 

absorbency values (at 500 nm) of the RCDs samples with the references rhodamine B 

QY of the samples were determined. 

The QY was calculated according to:   
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Where Φ is the quantum yield, m is the slope of the standard (st) rhodamine B and 

RCDs (x), η is the refractive index of the solvent, the QY for RCDs is found to be 60.8 

%.
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Table S1. Comparison of the precursor, method, and quantum yield RCDs with reported in the 

literature.

Precursor Method Quantum 
yield (%)

Reference

2,5-Diaminobenzenesulfonic acid,
4-aminophenylboronic acid hydrochloride

hydrothermal 5.44 1

phellodendron chinense schneid solvothermal 9.2 2
Urea, p-phenylenediamine hydrothermal 24 3

p-phenylenediamine, HNO3 hydrothermal 31 4
1,3-Dihydroxynaphthalene, KIO4 solvothermal 53 5

p-phenylenediamine, KIO4 solvothermal >60 This work

Table S2. Comparison of the method for H2O2 detections in this work with some previously 
reported strategies.

Probe Linear range 
(mM)

Detection limit
(mM)

Reference

CCP/NIR CdTe/CdS QDs 0.2-4 0.1 6
BCQDs 0.1-1 -- 7
Fe3O4@CdTe QDs 0.05-1 0.35 8
GQDs 0.1-10 0.02 9
DSPE-PEG/Ti3C2/RCDs 0.1-20 0.03 This work

CCP: cationic conjugated polymer; NIR: near-infrared; QDs: quantum dots; BCQDs: B-doped 

carbon quantum dots; GQDs: graphene quantum dots.

Table S3. Comparison of the method for glucose detections in this work with some previously 
reported strategies.

Probe Linear range 
(mM)

Detection limit 
(mM)

Reference

CCP/NIR CdTe/CdS QDs 0.1 0.05 6
Au NCs@FGO 1-10 0.16 10
CdTe QDs 0.5-16 0.5 11
Au NCs@PNAS-APBA-ARS 0.5-10 0.1 12
PHPMA@PMAETMA 0.1-1 0.1 13
AgNP-CdSe QDs 2-52 1.86 14
DSPE-PEG/Ti3C2/RCDs 0.1-20 0.05 This work

CCP: cationic conjugated polymer; NIR: near-infrared; QDs: quantum dots; Au NCs: Gold 

nanoclusters; FGO: fluorescent graphene oxide; PNAS: N-acryloxysuccinimide, APBA: 3-

aminophenyl boronic acid; ARS: Alizarin Red S; PHPMA: poly(N-(2-hydroxy-

propyl)methacrylamide); AgNP: Ag nanoparticle.
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Table S4. Amounts of glucose in human serum and whole blood samples measured with the DSPE-

PEG/Ti3C2/RCDs nanosystem.

No. Measured
(mM)

Added
(mM)

Found
(mM)

Recovery
(%)

RSD
(%)

1 4.59 1.00 5.86 104.8 2.7
2 7.38 1.00 8.26 98.6 1.9
3 4.01 1.00 5.21 104.0 2.3
4 6.51 1.00 7.46 99.3 3.1

1. fasting plasma glucose, 2. after breakfast, 3. fasting whole blood glucose, 4. after 
breakfast. 
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Fig. S1. FT-IR spectra of RCDs.
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Fig. S2. (A) Survey XPS, (B) C1s (C) O1s and (D) N1s spectra of the RCDs.  
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Fig. S3. Integrated fluorescence intensity and absorbance of the rhodamine B (A) and 
the RCDs (B).
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Fig. S4. Fluorescence intensity variation of the RCDs as a function of time under 500 

nm light illumination.
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Fig. S5. (A) pH-dependent fluorescence intensity when pH is switched between 5 and 

8. (B) Fluorescence intensities of RCDs in 100 mM pH 7.4 PBS after adding various 

concentrations of NaCl solutions.

Fig. S6. TEM of Ti3C2 nanosheets.
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Fig. S7. (A) AFM topography image of Ti3C2 nanosheets and (B) height profile along 

the line in the topographic image.

20 40 60 80

Ti3C2

 

 

In
te

ns
ity

 (a
. u

.)

2 Theta (Degree)

Ti3AlC2

Fig. S8. XRD patterns of Ti3AlC2 and Ti3C2 nanosheets.
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Fig. S9. (A) Survey XPS, and (B) Ti 2p spectra of the Ti3C2 nanosheets.
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Fig. S9. Surface zeta potential of DSPE-PEG, Ti2C3 nanosheets, and DSPE-PEG/Ti2C3. 

Bars represent means ± SD (n = 3).
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Fig. S10. XPS P 2p spectra of the Ti3C2 nanosheets (curve a) and DSPE-PEG/Ti3C2 

(curve b).

Fig. S11. Photos of Ti3C2 and DSPE-PEG/Ti2C3 in water and PBS.
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Fig. S12. Time-dependent fluorescence changes of RCDs (5μg mL-1) after the addition 

of DSPE/PEG-Ti3C2 (50 μg mL-1) at room temperature.
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Fig. S13. UV-vis spectra of DSPE-PEG/Ti3C2 (50 µg mL-1) and fluorescence excitation 

and emission spectra of RCDs (5 µg mL-1).
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Fig. S14. UV-vis spectra of RCDs (5 µg mL-1) upon addition of various concentrations 

of DSPE-PEG/Ti3C2 (from bottom to top: 0, 5, 10, 15, 20, and 25 μg mL-1) 
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Fig. S15. (A) Fluorescence responses of RCDs in the presence of different 

concentration DSPE-PEG/Ti3C2 at 0 °C and 37 °C. F0 and F are the fluorescence 

intensity of RCDs in the absence and presence of DSPE-PEG/Ti3C2, respectively. (B) 

Lineweaver-Burke plot of fluorescence quenching of RCDs by DSPE-PEG/Ti3C2. The 

concentration of RCDs is 5 µg mL-1.
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Figure S16. UV-vis spectra of GO and DSPE-PEG/Ti3C2.
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Fig. S17. The FTIR spectra of Ti3C2 (curve a) and H2O2 treated Ti3C2 (curve b).
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Fig. S18. (A) The UV-vis spectra of DSPE-PEG/Ti3C2 (25 µg mL-1) and H2O2 (10 

mM) treated DSPE-PEG/Ti3C2. 
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Fig. S19. (A) Fluorescence spectra of RCDs toward different concentrations of H2O2. 

(B) Influence of H2O2 concentration on the fluorescence intensity of RCDs.
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Fig. S20. The effects of incubation time on the fluorescence intensity of DSPE-

PEG/Ti3C2/RCDs and H2O2 (10 mM). 
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Fig. S21. Effects of pH value (A) and temperature (B) on the fluorescence intensity of 

DSPE-PEG/Ti3C2/RCDs nanosystem in the presence of 10 mM H2O2.
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Fig. S22. Fluorescence response of DSPE-PEG/Ti3C2/RCDs nanosystem, DSPE-

PEG/Ti3C2/RCDs nanosystem with glucose (30 mM), GOx (0.05 mg mL-1), and with 

the reaction products of glucose (30 mM) and GOx (0.05 mg mL-1).
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