Supporting information

Quinoline H2S donor Decorated Fluorescent Carbon Dots: Visible Light Responsive H2S Nanocarriers

Manoranjan Bera^a, Somnath Maji^b, Amrita Paul^a, Bikash Kumar Sahoo^a, Tapas Kumar Maiti^b and N. D. Pradeep Singh *^a

a Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India. E-mail: ndpradeep@chem.iitkgp.ernet.in

b Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 Kharagpur, West Bengal, India

Sl. No.	Table of content	Page No
1	General scheme for the synthesis of the quinoline H_2S donor (5).	2
2	¹ H, ¹³ C NMR and HRMS of the compound 4 & 5	3-4
3	Measurement of fluorescence quantum yields	5
4	Determination of incident photon flux (I_0) of the UV lamp by	5
	potassium ferrioxalate actinometry	
5	Measurement of photochemical quantum yield for the release of H_2S	6
	from QuH_2S -CDs (6)	
6	Zeta Potentials of CDs and QuH ₂ S-CDs	6
7	Tunable Emission Property of Quinoline-Carbon Dots	7
7	rundole Emission Property of Quinonne Carbon Dots	/
8	Control experiment for H ₂ S release in the presence of the H ₂ S selective	7
	fluorescent probe (D)	
9	Hydrolytic stability of QuH ₂ S-CD in biological environment	8
10	Characterization of adduct (A) formed during H ₂ S detection	9
11	Methylene Blue assay for H ₂ S quantification	10
12	Determination of the percentage of H ₂ S release from QuH ₂ S-CDs	11
12		10
13	Characterization of photoproduct via parallel experiment	12
14	Confocal imaging for H ₂ S release using fluorescence probe	13
15	References	13

1. General scheme for the synthesis of the Quinoline H₂S donor (5).

Scheme S1 Synthetic scheme of the quinoline H_2S donor QuH_2S (5).

2. Characterization of synthesized molecules and photoproduct by NMR Spectroscopy:

Fig. S1. ¹H and ¹³C NMR spectra of 4 in CDCl₃.

Fig. S2. ¹H and ¹³C NMR spectra of 5 in CDCl₃.

3. Measurement of fluorescence quantum yield

The fluorescence quantum yield (QY) of the carbon dots (CDs) and QuH₂S-CDs were determined by the reference point method.^[1] Quinine sulphate in 0.1 M H₂SO₄ (literature quantum yield: 54 %) was used as a standard sample to calculate the QY of CDs and QuH₂S-CDs, which were dissolved in methanol. The absorbance values of the solutions at the excitation wavelength were measured by UV–Vis spectrophotometer. Photoluminescence (PL) emission spectra of all the sample solutions were recorded by Hitachi F-7000 fluorescence spectrophotometer at an excitation wavelength of 410 nm.

$$\frac{\Phi_{\rm S}}{\Phi_{\rm R}} = \frac{A_{\rm S}}{A_{\rm R}} \frac{(\rm Abs)_{\rm R}}{(\rm Abs)_{\rm S}} \frac{\eta_{\rm s}^2}{\eta_{\rm R}^2}$$

Where Φ represents quantum yield, **Abs** represents absorbance, **A** represents the area under the fluorescence curve, and η is the refractive index of the medium. The subscripts **S** and **R** denote the corresponding parameters for the sample and reference, respectively.

4. Determination of incident photon flux (I_0) of the UV lamp by potassium ferrioxalate actinometry:

Potassium ferrioxalate actinometry was used for the determination of incident photon flux (I₀) of the UV lamp used for irradiation. Solution of potassium ferrioxalate, 1,10- phenanthroline and the buffer solution were prepared following the literature procedure.^[2] 0.006 M solution of potassium ferrioxalate was irradiated using 125 W medium pressure Hg lamp with 1 M NaNO₂ solution (UV cut-off filter), as visible light source (\geq 410 nm). At regular interval of time (3 min), 1 mL of the aliquots was taken out and to it 3 mL of 1,10-phenanthroline solution and 2 mL of the buffer solution were added and the whole solution was kept in dark for 30 min. The absorbance of red phenanthroline-ferrous complex formed was then measured spectrophotometrically at 510 nm. The amount of Fe²⁺ ion was determined from the calibration graph. The calibration graph was plotted by measuring the absorbance of phenanthroline-ferrous complex at several known concentration of Fe²⁺ ion in dark. From the slope of the graph the molar absorptivity of the phenanthroline-ferrous complex was calculated to be 1.10 × 104 M⁻¹ cm⁻¹ at 510 nm which is found to be similar to reported value. Using the known quantum yield (1.188 \pm 0.012) for potassium ferrioxalate actinometer at 406.7 nm, the number of Fe²⁺ ion formed during photolysis and the fraction of light absorbed by the actinometer, the incident intensity (I₀) of the 125 W Hg lamp was determined as 2.886 x 10¹⁶ quanta s⁻¹.

5. Measurement of photochemical quantum yield for QuH₂S-CDs (6):

A solution of 4 mg of the H₂S donor **6** was prepared in 20 mL ACN/PBS buffer (3:7) and mixed with methylene blue cocktail (as described in "Methylene Blue Assay for H₂S Quantification" below). Half of the solution was kept in dark and to the remaining half nitrogen was passed and irradiated (keeping the quartz cuvette 5 cm apart from the light source) using 125 W medium pressure Hg lamp as UV light source (\geq 410 nm) and 1 M NaNO₂ solution as UV cut-off filter with continuous stirring for 50 min. At a regular interval of time (10 min), 2 mL of the aliquots were taken and analyzed by UV-Vis spectroscopy. The amount of H₂S released was calculated from the methylene blue assay. Based on it, we plotted the amount of H₂S released versus irradiation time. We observed an exponential correlation for the release of H₂S which suggested a first order reaction kinetics. Further, the photochemical quantum yield (Φ_p) was calculated using below equation (1).

Where the subscript 'CS' and 'act' denotes caged substrate and actinometer respectively. Ferrioxalate was used as an actinometer. Φ_p is the photolysis quantum yield, k_p is the photolysis rate constant and F is the fraction of light absorbed.

6. Zeta Potentials of CDs and QuH₂S-CDs:

Fig. S3. Zeta Potentials of CDs and QuH₂S-CDs

7. Tunable Emission Property of Quinoline-Carbon Dots (QuH₂S-CDs) (6):

Aqueous suspensions of QuH_2S -CDs exhibited emission spectra in the visible region with the maxima strictly depending on the excitation wavelength (Fig. S4).^[3]

Fig. S4. Emission spectra of QuH₂S-CDs (6) with different excitation wavelength.

8. Control experiment for H₂S release in the presence of the H₂S selective fluorescent probe (D):

We performed the control experiment with CDs and QuH_2S in the presence of the H_2S selective fluorescent probe D (**Fig. S7**). We observed that CDs showed no effect and QuH_2S showed very little effect in the given condition i.e., in aqueous PSB buffer medium at $\lambda \ge 410$ nm. This proves that the effect shown by our system during H_2S detection experiment is really attributed to the QuH_2S -CDs. The control experiment with CDs and QuH_2S in the presence of the H_2S selective fluorescent probe D is provided as **Fig. S7** and discussed in the section

Fig. S5 Change in the fluorescence intensity of fluorescent probe D in presence of CDs, QuH_2S , QuH_2S -CDs at different irradiation ($\lambda \ge 410$ nm) time intervals in aqueous PBS buffer medium.

9. Hydrolytic stability of QuH₂S-CD in biological environment:

We thank the reviewer for this valuable suggestion. To check the stability of QuH_2S -CD in the presence of reactive cellular species, such as cysteine and glutathione, in the biological environment, we prepared the solution of QuH_2S -CD (5 mg/mL) in PBS buffer containing 10 % fetal bovine serum (FBS) at pH = 7.4 and added the solution of thiols (5 mM) (e.g; N-acetyl cysteine (NAC-SH) and GSH) separately to it. After 7 days, aliquots were taken from each sample and the UV-Vis absorption spectra were recorded. The results showed that the photodecomposition of QuH_2S -CD was negligible. Hence, in the presence of cellular thiols (cysteine and GSH) our designed QuH_2S -CD donors exhibited sufficient stability and could be suitable for biological applications.

Fig. S6 Decomposition of QuH_2S -CD donors (1 mg/ mL) in PBS buffer containing 10 % fetal bovine serum (FBS) at pH = 7.4, NAC–SH and GSH (5 mM) at pH = 7.4 during testing the hydrolytic stability for 7 days.

10. Characterization of adduct (A) formed during H₂S detection:

We carried out the experiment using Na_2S as a standard H_2S donor with the dye (D) and observed the changes both in UV-Visible and emission spectroscopy. We isolated the adduct (A) and recorded the UV-Vis and emission spectra of the adduct A. We found the spectroscopic data of the adduct (A) matched with our experimental results.

Fig. S7 UV-Visible (a) and emission (b) spectra of the Dye D.

Fig. S8 UV-Visible (a) and emission (b) spectra of the Adduct A.

HRMS: calcd for the adduct (A) C₁₈H₂₂N₂S₃ [M+ H]⁺, 362.0965; found: 362.0945.

11. Methylene Blue Assay for H₂S Quantification:

Methylene blue assay was carried out as described previously with some modifications.^[4] A 5 mM solution of Na₂S in sodium phosphate buffer (20 mM, pH 7.4)/acetonitrile (HPLC grade) (7:3) was prepared (Na₂S.9H₂O, 120.20 mg in 100 mL volumetric flask) and used as the stock solution. Aliquots of 100, 200, 300, 500, 700, 1000 μ L of the Na₂S stock solution were added into a 50 mL volumetric flask and dissolved in a mixture of sodium phosphate buffer/acetonitrile to obtain the standard solutions in 10, 20, 30, 50, 70, 100 μ M, respectively. 1 ml aliquot of the respective solution was reacted with the methylene blue (MB+) cocktail: 30 mM FeCl₃ (400 μ L) in 1.2 M HCl, 20 mM of N,N-dimethyl-1,4- phenylenediamine sulfate (400 μ L) in 7.2 mM HCl, 1% w/v of Zn(OAc)₂ (100 μ L) in H₂O at room temperature for at least 15 min (each reaction was performed in triplicate). The absorbance of methylene blue was measured at $\lambda_{max} = 663$ nm. To obtain the molar absorptivity of (MB+) a linear regression was plotted with the observed absorbance and concentration. Fig. S5. Standard Calibration curve with different concentration of Na₂S.

Fig. S9. Standard Calibration curve with different concentration of Na₂S.

In this experiment, a 100 μ M solution (total volume 20 mL) of the compound **6** was prepared in a 7:3 solution of sodium phosphate buffer (20 mM, pH 7.4)/acetonitrile. This solution was placed in a 24 mL scintillation vial. The resulting reaction vessel was irradiated with a 125 W mediumpressure mercury lamp as the source of UV-Vis light ($\lambda \ge 365$ nm) using a suitable UV cut-off filter (1M CuSO₄ solution) with continuous stirring. The aliquot (1 mL) was collected at different time intervals (5, 10, 15, and 20 min) and was mixed immediately with the methylene blue cocktail: 30 mM FeCl₃ (200 μ L) in 1.2 M HCl, 20 mM of N,N-dimethyl-1,4- 11 phenylenediamine sulfate (200 μ L) in 7.2 mM HCl, 1% w/v of Zn(OAc)₂ (100 μ L) in H₂O at room temperature for at least 20 min. The absorbance of methylene blue was measured at λ_{max} = 663 nm against a blank: 30 mM FeCl₃ (400 μ L) in 1.2 M HCl, 20 mM of N,Ndimethyl-1,4- phenylenediamine sulfate (400 μ L) in 7.2 mM HCl, 1% w/v of Zn(OAc)₂ (100 μ L) in H₂O, ACN (500 μ L), 20 mM sodium phosphate buffer PH 7.4 (500 μ L).

12. Determination of the percentage of H₂S release from QuH₂S-CDs:

In our current study, we have quantified the amount of H_2S released from 0.2 mg/mL of QuH_2S -CDs by methylene blue assay using the below equation:

Percentage of H_2S released = $\frac{Amount of H_2S released}{Amount of QuH_2S loaded on the surface of CDs} X100$

We found the amount of H_2S released from 0.2 mg/mL of QuH_2S -CDs by methylene blue assay was 40 μ M.

Also we carried out the loading study of QuH_2S on CDs using UV-Visible spectroscopy according to the literature procedure⁵ and found 65 μ g/mg of QuH_2S loaded on the carbon dot.

Now by using the above equation, we have quantified that ~ 60% of H_2S released from 0.2 mg/mL of QuH_2S -CDs.

13. Characterization of photoproduct (QuOH-CD) via parallel experiment:

Our designed system QuH_2S -CDs is the light responsive H_2S releasing moiety, which produces QuOH as a photoproduct after the release of H_2S . But characterisation of the photoproduct is very difficult as because there also CD was decorated with the photoproduct.

So that we performed a parallel experiment with a similar type of model system QuH_2SR and monitor the photorelease experiment in the aqueous PBS buffer (pH ~7.4) medium as same reaction condition we used for the QuH_2S -CD. We isolated the photoproduct and characterized by 1H-NMR and HRMS. We found the photoproduct matched with QuOH which helps us understand the photorelease mechanism for our carbon dot attached quinoline system.

Scheme 2 Photorelease of H₂S from QuH₂S-CDs triggered by visible light in PBS buffer (pH~7.4) medium.

¹H NMR (500 MHz, DMSO-d₆) δ 8.20 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.47 (t, J = 7.8Hz, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 4.83 (s, 2H). HRMS (ESI+) calcd for C₁₀H₉NO₂ [M+ H]⁺, 175.0633; found: 175.0640.

Hence the increase in the fluorescence of the products can be attributed to the increase in hydrophilicity of the system after the formation of the photoproduct, quinolin-2-ylmethanol-CDs (QuOH-CDs), due to the presence of hydroxyl (hydrophilic) group.

14. Confocal imaging for H₂S release using fluorescence probe:

Fig. S10 Confocal microscopy images of H₂S release from QuH₂S-CDs. Gradual release of H₂S from QuH₂S-CDs was monitored using H₂S sensitive fluorescent probe (D) at different time intervals during irradiation with light ($\lambda \ge 410$ nm), (a) 0 min; (b) 25 min; (c) 50 min.

15. References:

- a) S. Mandal, C. Ghatak, V. G. Rao, S. Ghosh, N. Sarkar. J. Phys. Chem. C, 2012, 116, 5585–5597. (b) S. Zhu; Q. Meng; L. Wang; J. Zhang; Y. Song; H. Jin; K. Zhang; H. Sun; H. Wang; B.Yang. Angew. Chem. Int. Ed. 2013, 52, 3953–3957.
- E. T. Ryan, T. Xiang, K. P. Johnston, M. A. Fox, J. Phys. Chem. A, 1997, 101, 1827– 1835.
- 3. H. Guo, B. You, S. Zhao, Y. Wang, G. Sun, Y. Bai and L. Shi, RSC Adv., 2018, 8, 24002
- 4. Y. Zhao, H. Wang and M. Xian, J. Am. Chem. Soc., 2011, 133, 15.
- S. Karthik, B. Saha, S. K. Ghosh and N. D. Pradeep Singh, *Chem. Commun.*, 2013, 49, 10471–10473.