Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

## Supplementary data

Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and its application for photothermal cancer treatment in tumor-bearing mice Chao-Cheng Chen<sup>a,‡</sup>, Deng-Yuan Chang<sup>a,‡</sup>, Jia-Je Li<sup>a</sup>, Hui-Wen Chan<sup>a</sup>, Jenn-Tzong Chen<sup>b</sup>, Chih-Hsien Chang<sup>b</sup>, Ren-Shyan Liu<sup>a,c,d,e</sup>, C. Allen Chang<sup>a,f,g</sup>, Chuan-Lin Chen<sup>a,\*</sup>, and Hsin-Ell Wang<sup>a,\*</sup> <sup>a</sup> National Yang-Ming University, Department of Biomedical Imaging and Radiological Sciences, Taipei, TW.

<sup>b</sup> Institute of Nuclear Energy Research, Taoyuan County, TW.

<sup>c</sup> National Yang-Ming University, Institute of Clinical Medicine Taipei, TW.

<sup>d</sup> National Comprehensive Mouse Phenotyping and Drug Testing Center, Molecular

and Genetic Imaging Core/Taiwan Mouse Clinic, Taipei, TW.

<sup>e</sup> Cheng Hsin General Hospital, Department of Nuclear Medicine, Taipei, TW.

<sup>f</sup> National Yang-Ming University, Department of Biotechnology and Laboratory

Science in Medicine, Taipei, TW.

<sup>g</sup> National Yang-Ming University, Molecular Imaging Research Center (MIRC), Taipei,

τw

\* Corresponding author, <u>clchen2@ym.edu.tw</u> (Chuan-Lin Chen); <u>hewang@ym.edu.tw</u> (Hsin-Ell Wang)  $\ddagger$  These authors contributed equally to this work and should be considered as co-

first authors.

## Calculation of photothermal conversion efficiency

Two milliliters of pAuNS solution at a concentration of 20 ppm was irradiated with 793 nm laser for 900 s to reach the maximum steady temperature and then cooled down without laser irradiation. The temperature was recorded by a thermal meter every 10 s during this study. We calculated the photothermal conversion efficiency (η) by the following equation<sup>1</sup>:

$$\eta = \frac{hs(T_{Max} - T_{surr}) - Q_{Dis}}{I(1 - 10^{-A_{793}})}$$
(1)

Where *h* is the heat transfer coefficient, *s* is the surface area of the container, and the value of *hS* is obtained from Eq. 4. T<sub>Max</sub> and T<sub>surr</sub> represented the maximum steady temperature of the pAuNS solution after 790 nm laser irradiation and the environment temperature, respectively. In this study, T<sub>Max</sub> of the pAuNS solution and T<sub>surr</sub> were 49.2 and 24.2°C, respectively. Hence, the temperature change (T<sub>Max</sub>-T<sub>surr</sub>) of the pAuNS solution after laser irradiation was 25°C. Q<sub>Dis</sub> is heat dissipation from the absorbed light by cuvette and pure water, and the value of Q<sub>Dis</sub> was 51.98 mW. The laser power (*I*) and the absorbance of pAuNS at 793 nm were 1.0 W and 0.92, respectively.

In order to gain the value of *hs*, the dimensionless parameter  $\theta$  was firstly calculated by the following equation:

$$\theta = \frac{T - T_{surr}}{T_{Max} - T_{surr}} \qquad (2)$$

where T is the temperature in the cooling period according to Fig. 4B.

According to Fig. 4B, the sample system time constant ( $\tau_s$ ) can be computed as

$$t = -\tau_s \ln(\theta) \qquad (3)$$

The value of  $\tau_s$  was 441.92 (s), and it can be used for the following equation for calculating the value of *hS*.

$$hs = \frac{\sum_{i} m_{i} \times C_{p,i}}{\tau_{s}} \qquad (4)$$

where *m* is the mass and *C* is the heat capacity of each *i* component of the sample cell. In this study, the mass of pAuNS solution and quartz cuvette was 2 and 6.07 g, respectively. The heat capacity of pAuNS solution and quartz cuvette was 4.18 and 0.839 J/g·°C, respectively. Hence, the *hs* was calculated to be 0.0304 W/°C. Substituting each parameter in Eq.1, the photothermal conversion efficiency of pAuNS solution (O.D. = 1.0) at a 793 nm laser irradiation was 80.5%.

## Calculation of heat flux per mass and heat capacity of pAuNSs

The heat flux per mass and heat capacity of pAuNS at a concentration of 20 ppm was performed based on the previous study.<sup>2</sup>

$$D = \frac{hs(T_{Max} - T_{surr}) - Q_{Dis}}{mass \ of \ solvent \ or \ materials} \tag{5}$$

Therefore,  $D_{water}$  and  $D_{pAuNS}$  were 0.355 and 1.77 $\times 10^4$  W/g.

Assuming no heat loss in this system during this experiment, the temperature

increase speed can be calculated by the following equation:

$$Temperature increase speed = \frac{D}{heat \ capacity \ of \ solvent \ or \ materials} \tag{6}$$

Hence, the temperature increase speed of water and pAuNS were 0.085 and 1.37 $\!\times$ 

10<sup>5</sup> °C/s.



**Fig. S1** Physical stability of AuNSs, pAuNSs and DTPA-pAuNSs incubated in deionized water at 4°C. The change of the absorbance peak (A) and particle size distribution (B) were examined using UV-Visible Spectrophotometer and dynamic light scattering,

respectively.



Fig. S2 Relative cell viability of SKOV-3 cells at 24 h or 48 h post PTT treatment. The

cell viability was determined by MTT assay. \*\* indicates p < 0.01.



**Fig. S3.** The tumor burden of each SKOV-3 tumor-bearing mouse in the control, laser irradiation alone, pAuNSs alone and pAuNS-mediated PTT groups.

| Gold<br>nanoparticles | Absorption<br>peak (nm) | Hydrodynamic<br>diameter (nm) <sup>1</sup> | PDI   | Zeta potential<br>(mV) |
|-----------------------|-------------------------|--------------------------------------------|-------|------------------------|
| AuNSs                 | 791 ± 2.1               | 46.8 ± 3.6                                 | 0.350 | -37.41 ± 0.24          |
| pAuNSs                | 823 ± 3.2               | 50.5 ± 2.1                                 | 0.223 | -8.69 ± 2.06           |
| DTPA-pAuNSs           | 817 ± 3.5               | 51.4 ± 2.5                                 | 0.202 | -15.76 ± 1.45          |

**Table S1.** Summary of UV-Vis peak, hydrodynamic diameter, polydispersity index(PDI) and zeta potential of gold nanostars

<sup>1</sup>, determined by dynamic light scattering; AuNSs, gold nanostars; pAuNSs, PEGylated gold nanostars; DTPA-pAuNSs, DTPA-conjugated PEGylater gold nanostars

Table S2. Photothermal conversion efficiency ( $\eta$ ) of gold nanoparticles developed in

| Photothermal agents                 | Particle size<br>(nm) | Wavelength<br>of laser (nm) | η      | Reference  |
|-------------------------------------|-----------------------|-----------------------------|--------|------------|
|                                     | ~40 <sup>a</sup>      | 815                         | 59 %   | 3          |
| Coldnenschalls                      | 60                    | 980                         | 61 %   | 2          |
| Gold nanosnells                     | 120 <sup>c</sup>      | 808                         | 41.6 % | 4          |
|                                     | ~180 <sup>b</sup>     | 815                         | 30 %   | 3          |
|                                     | 7/26<br>(wide/length) | 808                         | 50 %   | 5          |
| Gold nanorods                       | 10/38.9               | 815                         | 55 %   | 3          |
|                                     | 13/45                 | 808                         | 23.1 % | 6          |
|                                     | 17/56.1               | 808                         | 22.1 % | 7          |
| Gold nanocages                      | 45                    | 808                         | 63.6 % | 7          |
|                                     | 30                    | 980                         | 94 %   | 2          |
| Cold non ostore                     | 50.5                  | 793                         | 80.5 % | This study |
| Gold nanostars                      | $\sim 60^{d}$         | 980                         | 78.8 % | 8          |
|                                     | 60                    | 980                         | 90 %   | 2          |
| Hexapods                            | 25                    | 808                         | 29.6 % | 7          |
| Pathy gold-on<br>carbon nanospheres | 185                   | 808                         | 31.6 % | 6          |

this study and those reported in literatures.

a, Au<sub>2</sub>S/Au nanoshells; b, SiO<sub>2</sub>/Au nanoshells; c, Ag/Au nanoshell; d, spiky Au<sub>6</sub> nanoparticles

## Reference

- C. Ayala-Orozco, C. Urban, M. W. Knight, A. S. Urban, O. Neumann, S. W. Bishnoi, S. Mukherjee, A. M. Goodman, H. Charron, T. Mitchell, M. Shea, R. Roy, S. Nanda, R. Schiff, N. J. Halas and A. Joshi, *ACS nano*, 2014, **8**, 6372-6381.
- Y. Liu, J. R. Ashton, E. J. Moding, H. Yuan, J. K. Register, A. M. Fales, J. Choi, M. J. Whitley, X. Zhao, Y. Qi, Y. Ma, G. Vaidyanathan, M. R. Zalutsky, D. G. Kirsch, C. T. Badea and T. Vo-Dinh, *Theranostics*, 2015, 5, 946-960.
- 3. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich and N. J. Halas, *The Journal of Physical Chemistry C*, 2009, **113**, 12090-12094.
- 4. R. Zhu, Y. Li, X. Zhang, K. Bian, M. Yang, C. Cong, X. Cheng, S. Zhao, X. Li and D. Gao, *Nanotechnology*, 2019, **30**, 055602.
- 5. V. P. Pattani and J. W. Tunnell, *Lasers in surgery and medicine*, 2012, **44**, 675-684.
- 6. X. Wang, D. Cao, X. Tang, J. Yang, D. Jiang, M. Liu, N. He and Z. Wang, ACS applied materials & interfaces, 2016, **8**, 19321-19332.
- 7. J. Zeng, D. Goldfeld and Y. Xia, *Angewandte Chemie*, 2013, **52**, 4169-4173.
- 8. C. Bi, J. Chen, Y. Chen, Y. Song, A. Li, S. Li, Z. Mao, C. Gao, D. Wang, H. Möhwald and H. Xia, *Chemistry of Materials*, 2018, **30**, 2709-2718.