Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Antibacterial silver-doped phosphate-based glasses prepared by coacervation

Benjamin A. Kyffin,^a Farzad Foroutan,^a Farah N. S. Raja,^b Richard A. Martin,^b David M. Pickup,^c Spencer E. Taylor,^a Daniela Carta^{a,*}

^aDepartment of Chemistry, University of Surrey, GU2 7XH, Guildford, UK. ^bSchool of Engineering & Applied Science and Aston Institute for Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. ^cSchool of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK.

*Corresponding author: Dr D. Carta, Department of Chemistry, University of Surrey, GU2 7XH, Guildford, UK. Email: d.carta@surrey.ac.uk

Sample	Elemental composition (weight%)					
	Р	Са	Na	Ag	0	
G-RT	27.70	14.87	5.23	-	52.17	
G-Ag1-RT	24.13	13.63	4.60	1.97	55.67	
G-Ag3-RT	24.87	14.07	4.43	6.00	50.67	
G-Ag5-RT	23.73	13.53	3.37	8.43	50.93	
G-Ag9-RT	20.43	12.20	2.67	14.20	50.50	
G-Ag14-RT	22.50	11.00	2.00	22.97	41.50	

Table S1: Compositions of the glasses expressed in terms of element weight% based on EDXmeasurements.

Table S2: Compositions of the glasses expressed in terms of oxide weight% based on EDX measurements.

Sample	Oxide composition (weight%)						
	P ₂ O ₅	CaO	Na ₂ O	Ag ₂ O	H ₂ O		
G-RT	62.81	20.58	6.98	0.00	9.63		
G-Ag1-RT	54.12	18.67	6.07	2.07	19.08		
G-Ag3-RT	56.18	19.41	5.89	6.36	12.16		
G-Ag5-RT	53.50	18.63	4.46	8.91	14.50		
G-Ag9-RT	45.82	16.71	3.52	3.52 14.91			
G-Ag14-RT	51.21	15.29	2.68	58 24.50			

Figure S1: Representative EDX spectrum of a silver doped glass showing the spectral lines used to calculate the compositions of the glasses.

G-RT	G-Ag1-RT	G-Ag3-RT	G-Ag5-RT	G-Ag9-RT	G-Ag14-	Assignment
					RT	
700	697	697	697	695	695	v _{sym} (P-O _b), A
893	892	892	890	891	890	v _{asym} (P-O _b), A
1057	1053	1053	1053	1052	1052	v _{sym} (PO ₃) ²⁻ t, A
1170	1168	1167	1167	1164	1165	v _{sym} (P-O _t), A
1253	1252	1250	1249	1244	1244	v _{asym} (P-O _t), A
G-300	G-Ag1-	G-Ag3-	G-Ag5-	G-Ag9-	G-Ag14-	
	300	300	300	300	300	
699	697	699	705	700	701	v _{sym} (P-O _b), A
892	864	894	896	896	896	v _{asym} (P-O _b), A
1058	1058	1057	1056	1053	1053	v _{sym} (PO ₃) ²⁻ t, A
1169	1169	1164	1161	1162	1159	v _{sym} (P-O _t), A
1250	1248	1245	1242	1241	1236	v _{asym} (P-O _t), A
G-400	G-Ag1-	G-Ag3-	G-Ag5-	G-Ag9-	G-Ag14-	
	400	400	400	400	400	
692	694	691	684			v _{sym} (P-O _b), A
		719	719	719	717	v _{sym} (P-O _b), C
		740	741	742	741	v _{sym} (P-O _b), C
		778	778	779	775	v _{sym} (P-O _b), C
1044	1059	1042	1043	1048	1044	v _{sym} (PO ₃) ²⁻ t, A
1174	1173	1173	1174	1175	1173	v _{sym} (P-O _t), A
		1221	1221	1221	1220	v _{asym} (PO ₃) ²⁻ t, C
1259	1253	1252	1251	1249	1245	v _{asym} (P-O _t), A

Table S3: Raman spectral bands (cm⁻¹) from of glasses dried at room temperature and calcined at 300 and 400 °C as a function of %mol Ag_2O with assignments.

A = Amorphous phase. C = Crystalline phase.

Compositional mol% of Ag₂O in G-Ag1-RT

The weight% elemental composition as show in Table S1 was used to calculate the compositional mol% of each atom shown in Table 2. The calculation for mol% Ag_2O for G-Ag1-RT is shown below.

In order to calculate the glass composition, the weight% of each element was obtained from EDX:

Ag weight% = 1.97

This was then used to calculate the oxide weight percentage taking into account the number of each element in its respective oxide form:

 Ag_2O weight% = 2.07

From this the mole% of each oxide can be calculated, however as the excess oxygen is assumed to exist as water and not part of the glass network, the mole% should be calculated excluding H_2O :

Ag₂O mol% = <u>1.09</u>

 $(P_2O_5)_{0.46}(CaO)_{0.41}(Na_2O)_{0.12}(Ag_2O)_{0.01}.1.29H_2O$