Supporting Information

One-Pot Synthesis of Water-Soluble and Biocompatible Superparamagnetic Gadolinium-doped Iron Oxide Nanoclusters

Huijing Xiang,^a Pingli Dong,^a Lei Pi,^b Zhijie Wang,^a Tingting Zhang,^a Siyang Zhang,^a Chichong Lu, *^{a,c} Yao Pan,^d Huanxiang Yuan,^a and Haiyan Liang *^a

GdIO NCs	r_1 ([Fe] mM·s ⁻¹)	r_2 ([Fe] mM·s ⁻¹)	r_2/r_1
Gd _{0.26} Fe _{2.74} O ₄	2.06	844.8	410.1
$Gd_{0.36}Fe_{2.64}O_4$	3.54	974.0	275.1
$Gd_{0.45}Fe_{2.55}O_4$	5.06	859.7	169.9
Gd _{0.53} Fe _{2.47} O ₄	4.29	703.8	164.1

Table S1. The r_2 and r_1 of GdIO NCs with different Gd doping amounts at 1.5 T

Table S2. The r_2 and r_1 of GdIO NCs with different Gd doping amounts at 7 T

GdIO NCs	r_1 ([Fe] mM·s ⁻¹)	r_2 ([Fe] mM·s ⁻¹)	r_2/r_1
$Gd_{0.26}Fe_{2.74}O_4$	1.45	765.7	528.1
$Gd_{0.36}Fe_{2.64}O_4$	2.85	768.5	269.6
$Gd_{0.45}Fe_{2.55}O_4$	4.49	633.6	141.1
Gd _{0.53} Fe _{2.47} O ₄	3.36	566.3	168.5

Fig. S1. Plots of the inverse longitudinal relaxation times $(1/T_1)$ versus Fe concentrations at (a) 1.5 T and (b) 7 T, respectively.

Fig. S2. A) Photograph of aqueous suspensions of (a) $Gd_{0.45}Fe_{2.55}O_4$ NCs, (b) FITC alone and (c) FITC@Gd_{0.45}Fe_{2.55}O_4 NCs. B) Photograph under 365 nm UV irradiation.

Fig. S3 TEM and high-resolution TEM images of Gd_{0.53}Fe_{2.47}O₄ NCs.

Fig. S4 The field-cooling (FC) and zero-field-cooling (ZFC) magnetization of $Gd_{0.26}Fe_{2.74}O_4$ NCs as a function of temperature measured in an external magnetic field (50 Oe).

Fig. S5 The field-cooling (FC) and zero-field-cooling (ZFC) magnetization of $Gd_{0.36}Fe_{2.64}O_4$ NCs as a function of temperature measured in an external magnetic field (50 Oe).

Fig. S6 The field-cooling (FC) and zero-field-cooling (ZFC) magnetization of $Gd_{0.45}Fe_{2.55}O_4$ NCs as a function of temperature measured in an external magnetic field (50 Oe).

Fig. S7 The field-cooling (FC) and zero-field-cooling (ZFC) magnetization of $Gd_{0.53}Fe_{2.47}O_4$ NCs as a function of temperature measured in an external magnetic field (50 Oe).