Supporting information

Graphene-nucleic acid biointerface engineered biosensors with

tunable dynamic range

Zhifeng Zhao,^{‡ ab} Hao Yang,^{‡ ab} Wenyue Zhao,^a Sha Deng,^a Kaixiang Zhang,^{bc} Ruijie Deng,^{*a}

Qiang He,^a Hong Gao^a and Jinghong Li^{*b}

^a College of Biomass Science and Engineering, Healthy Food Evaluation Research Center,

Sichuan University, Chengdu 610065, China

^b Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical

Biology, Tsinghua University, Beijing 100084, China

° School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China

[‡] These authors contributed equally to this work.

*E-mail:

jhli@mail.tsinghua.edu.cn;

drj17@scu.edu.cn

Fig. S1. The secondary structures of the ATP binding aptamer probes (T0A, T4A, T8A and T12A), and the secondary structures were predicted by NUPACK.

Fig. S2. AFM images and the measured thickness of GO and aptamers-functionalized GO. (A) GO; (B) T0A-functionalized GO; (C) T4A-functionalized GO; (D) T8A-functionalized

GO; (E) T12A-functionalized GO. The final concentration of GO and aptamers with different lengths were 25 μ g/mL and 1.5 μ M, respectively. As the GO surface was not flat, we estimated the average thickness of GO or GO/aptamer probes by measuring 50 sites.

Fig. S3. Investigation of the kinetics of aptamer probe binding in the presence or absence of ATP. The concentrations of ATP, GO and aptamer probes were 2 mM, 25 μ g/mL and 150 nM, respectively. The excitation wavelength was set at 480 nm, and the emission wavelength was 522 nm.

Fig. S4. The fluorescence intensity of atAtpasensor using different concentrations of GO for ATP detection, and the scatter plot of signal-to-background ratio. The concentrations of ATP and aptamer probes were 2 mM and 150 nM, respectively.

Based on the signal-to-background ratio, a concentration of 25 $\mu\text{g/mL}$ GO was used for atAtpasensor.

Fig. S5. Typical fluorescence emission spectra of atAtpasensor using T0A (A), T4A (B), T8A (C) and T12A (D) upon the addition of different concentration of ATP range from 0 to 6000 μ M. The excitation wavelength was set at 480 nm, and the emission wavelength was 522 nm. The concentration of GO was 25 μ g/mL.

Fig. S6. Typical fluorescence emission spectra of atAtpasensor using T0A (A), T0A/T8A (1:1) (B), T0A/T12A (1:1) (C), and T0A/T4A/T8A/T12A (1:3:3:3) (D) (the content ratio was defined as molar concentrations) upon the addition of different concentration of ATP range from 0 to 6000 μ M. The excitation wavelength was set at 480 nm, and the emission wavelength was 522 nm. The concentration of GO was 25 μ g/mL.

Fig. S7. Fluorescence intensity of atAptasensor in the presence of 250 μ M ATP, Adenosine, ADP, AMP, and GSH, respectively. Aptamer probe, T0A/54A/T8A/T12A (1:3:3:3) was selected in this test.

Fig. S8. Recovery of ATP in serum and milk samples. The spiked ATP concentration were 200, 1000 and 3000 μ M. The concentration of GO was 25 μ g/mL. The concentrations of aptamer probes were 150 nM (15 nM T0A, 45 nM T4A, 45 nM T8A and 45 nM T12A). All real samples were carried for 3 parallel tests.

Oligonucleotide	Sequences (5' to 3')					
T0A	/FAM/-ACCTGGGGGGAGTATTGCGGAGGAAGGT					
T4A	/FAM/-ACCTGGGGGGAGTATTGCGGAGGAAGGTAAAA					
T8A	/FAM/-ACCTGGGGGGAGTATTGCGGAGGAAGGTAAAAAAAA					
T12A	/FAM/-ACCTGGGGGGAGTATTGCGGAGGAAGGTAAAAAAAAAAA					

Table S1. Oligonucleotide sequences

Table S2. Comparison of the fluorescent methods based on aptamer for ATP detection

Detection method	Assay	Temperatu	LOD	Dynamic	complee	Ref.
Detection method	time	re	(µM)	range (µM)	samples	
Berberine based label-free		07 00 1	25.20			Angl Disease Cham
aptamer, AuNRs-RQD Labeled	20 min	R.T.	3.5, 3.6 and 3.8	10 – 50	Human	Anal. Bioanal. Chem.,
aptamer and AgNP-CD FRET					serum	2019, 411, 1319
		R.T.	0.002	0.1 - 120	Human	Biosens. Bioelectron.,
Two G-rich split ATP aptamer	1.5 min				serum	2019, 134, 36
		R.T. and 45				Sensor. Actuat. B-
Label-free AIE fluorescent probe	10 min	°C	24	24 100 - 1000	None	Chem., 2016, 230, 556
GO-based and Cryonase-Assisted					-	Microchim. Acta, 2019,
Signal Amplification	30 min	37 ℃	0.0225	0 – 0.1	Serum	186, 494
Label-Free Fluorescence		20 ℃, 37	0.0044	0.007 00.7	Serum	Anal. Chem., 2018, 90,
Polarization Strategy	115 min	°C	0.0344	0.067 - 26.7		13708
	100 ·	90℃, R.T.,	0.040	30 - 470	Serum	Microchim. Acta, 2019,
PEI-CDs based aptasenors	100 min	37 ℃	0.013			186, 717
Interchain staudinger reaction		БŦ	0.05	20 - 100	None	T-1
based ATP sensing platform	50 min	R.I.	3.25			Talanta, 2018, 178, 282
Zn ²⁺ -modulated lcys-CdTe QDs	25 min	R.T.	2.07	5 - 50	Human	Sensor. Actuat. B-
based aptasensors					serum	Chem., 2015, 220, 433
					Milk,	
Affinity-tunable aptasensors	30 min	R.T.	1.07	2 - 3500	Serum,	This work
					E. coli.	

Non-target molecules	T0A	T4A	T8A	T12A	T0A/T8A (1:1)	T0A/T12A (1:1)	T0A/T4A/T8A/T12A (1:3:3:3)
GTP	3.98	5.25	7.42	11.64	4.34	2.99	7.19
CTP	11.82	37.36	43.28	14.84	24.52	11.86	27.92
UTP	16.28	44.05	49.12	15.45	29.08	14.10	28.48

Table S3. Discrimination factor for ATP detection using different aptamer probes