Electronic Supplementary Information

Conjugation of RTHLVFFARK to Human Lysozyme Creates a Potent Multifunctional Modulator for Cu²⁺-Mediated Amyloid β-Protein Aggregation and Cytotoxicity

Xi Li, Wenjuan Wang, Xiaoyan Dong, Yan Sun*

Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China

*Corresponding author

E-mail: ysun@tju.edu.cn. Phone: +86 22 27403389. Fax: +86 22 2740349.

Agent	Molecular weight	Size	ζ potential	
	(Da)	(nm)	(mV)	
hLys	14689.7	4.5 ± 0.4	5.8 ± 0.4	
PDEA-hLys	15092.1	N.D.	N.D.	
R-hLys	R-hLys 17471.3		13.2 ± 0.7	

Table S1. Physicochemical properties of hLys, PDEA-hLys and R-hLys at pH 7.4

N. D. not determined.

Table S2. Quantitative analysis of CD spectra of hLys and R-hLys^{*a*}

	Helix1	Helix2	Strand1	Strand2	Turns	Unordered	Total
hLys (0 h)	0.573	0.223	0.000	0.006	0.076	0.161	1.039
R-hLys (0 h)	0.573	0.221	0.001	0.005	0.070	0.159	1.028
hLys (48 h)	0.571	0.222	0.000	0.006	0.077	0.162	1.038
R-hLys (48 h)	0.570	0.221	0.002	0.008	0.081	0.168	1.049

^{*a*} The result was analyzed by CD Dicroweb with the self-consistent method (SELCON3) (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml).^{1,2}

Fig. S1 Analysis of the purity of R-hLys by size exclusion chromatography (SEC). The retention volumes of hLys and R-hLys were 20.04 and 19.94 mL, respectively.

Fig. S2 Mass spectra of (A) native hLys, (B) PDEA-hLys (intermediate product, see Scheme 1) and (C) R-hLys.

Fig. S3 Zeta potentials of hLys and R-hLys as a function of pH. Native hLys and R-hLys were both 25 μ M in deionized water. Each point was the mean of three different measurements and error bars represent the standard deviations.

Fig. S4 Comparison of the far-UV circular dichroism spectra of native hLys and R-hLys after incubation for (A) 0 h and (B) 48 h and their fluorescence spectra after incubation for (C) 0 h and (D) 48 h. Native hLys or R-hLys was dissolved in buffer A at 25 μ M and kept static at 37 °C.

Fig. S5 Aggregation kinetics of $A\beta_{40}$ (25 µM) incubated in the absence and presence of (A) hLys, (B) RC11 and (C) R-hLys. RC11 concentrations for lines P1 to P3 in (B) were approximately equal to those of RC11 coupled to R-hLys for lines L1 to L3 in (A), respectively. All measurements were conducted in buffer A at 37 °C.

Fig. S6 Cell viability assay at different (yellow) hLys, (blue) RC11 or (red) R-hLys concentrations using MTT assay. Lanes denote the following conditions: lane 1, buffer A; lane 2, 0.5 μ M hLys/R-hLys, 1 μ M RC11; lane 3, 1.25 μ M hLys/R-hLys, 2.5 μ M RC11; lane 4, 2.5 μ M hLys/R-hLys, 5 μ M RC11; lane 5, 5 μ M hLys/R-hLys, 10 μ M RC11. All concentration data represent those in the cell culture medium.

Fig. S7 ITC analysis of the interactions between Cu^{2+} and (A) hLys, (B) R-hLys. The concentrations of Cu^{2+} , glycine and chelator were 0.5 mM, 2 mM and 0.1 mM in buffer A, respectively. The top panel shows the heat rate for each injection and the positive peaks indicate an exothermic process; the bottom panel shows the integrated heat for each injection.

Fig. S8 Aggregation kinetics of Cu²⁺-mediated A β_{40} aggregation incubated in the absence and presence of (A) hLys, (B) RC11 and (C) R-hLys. The concentration of A β_{40} was 25 µM. Lines denote the following conditions: (A) line 1, A β_{40} alone; line 2, Cu²⁺:A β_{40} = 0.4:1; line L1, hLys:Cu²⁺:A β_{42} = 0.1:0.4:1; line L2, hLys:Cu²⁺:A β_{42} = 0.25:0.4:1; line L3, hLys:Cu²⁺:A β_{42} = 0.5:0.4:1. (B) line 1, A β_{40} alone; line 2, Cu²⁺:A β_{40} = 0.4:1; line P1, RC11:Cu²⁺:A β_{42} = 0.2:0.4:1; line P2, RC11:Cu²⁺:A β_{42} = 0.5:0.4:1; line P3, RC11:Cu²⁺:A β_{42} = 1:0.4:1. (C) line 1, A β_{40} alone; line 2, Cu²⁺:A β_{40} = 0.4:1; line R1, R-hLys:Cu²⁺:A β_{40} = 0.1:0.4:1, line R2, R-hLys:Cu²⁺:A β_{40} = 0.25:0.4:1; line R3, R-hLys:Cu²⁺:A β_{40} = 0.5:0.4:1. All measurements were conducted

in buffer A at 37 °C.

Fig. S9 Analysis of the stability of R-hLys in the presence of ascorbic acid by SEC. The concentrations of R-hLys and ascorbic acid were 25 μ M and 500 μ M, respectively.

Fig. S10 Time-dependent ROS production measured by CCA fluorescence assays under a reducing environment. Cu^{2+} incubated with hLys/RC11/R-hLys in the absence of A β_{42} . Lines denote the following conditions: line 0, Cu^{2+} ; line L1, Cu^{2+} + 2.5 µM hLys; line L2, Cu^{2+} + 6.25 µM hLys; line L3, Cu^{2+} + 12.5 µM hLys; line P1, Cu^{2+} + 5 µM RC11; line P2, Cu^{2+} + 12.5 µM RC11; line P3, Cu^{2+} + 25 µM RC11; line R1, Cu^{2+} + 2.5 µM R-hLys; line R2, Cu^{2+} + 6.25 µM R-hLys; line R3, Cu^{2+} + 12.5 µM R-hLys.

Fig. S11 Normalized ThT fluorescence of $A\beta_{42}$ fibrils incubated in the absence and presence of various concentrations of RC11 for 48 h. The final concentration of $A\beta_{42}$ was 25 μ M.

Fig. S12 ThT fluorescence kinetics for the remodeling of $A\beta_{42}$ fibrils with or without (A) hLys or (B) R-hLys at different concentrations. The final concentration of $A\beta_{42}$ fibrils was 25 μ M. $A\beta_{42}$ fibrils were obtained by incubation in buffer A at 37 °C for 24 h.

References

- 1 L. Whitmore and B. A. Wallace, *Biopolymers*, 2008, 89, 392-400.
- 2 N. Sreerama and R. W. Woody, Anal. Biochem. 2000, 287, 252-260.