Supporting Information

A Supramolecule based Fluorescence Turn-on and Ratiometric Sensor for ATP in Aqueous Solution

Vidya R. Singh and Prabhat K. Singh*

Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085,

INDIA

*Authors for correspondence: Email: prabhatk@barc.gov.in; prabhatsingh988@gmail.com

Tel. 91-22-25590894, Fax: 91-22-5505151

Figure S1: Steady state emission spectrum ($\lambda ex = 410$ nm) of ThT (21 μ M) at varying concentrations of SCD (12.2 μ M). Inset: variation of emission intensity at 545nm with increasing concentration of SCD.

Figure S2: Normalized ground state absorption spectrum of ThT (21 μ M) in water (dashed) and in the presence of SCD (12.2 μ M) (solid).

Transient Decay of ThT (21 μ M) (λ_{ex} = 406 nm , λ_{em} =545 nm) in (1) water (blue) (2) 12.2 μ M of SCD (red). The solid black line represents instrument response function (IRF).

S No	Probe/System	Commercial	Detection Limit	Ratiometric	References
1	Aptamer Beacon	Synthesized	0.019 mM	No	Ref 1
	Covalently Linked to	~)			
	Graphene Oxide				
2	QF-MABs	Synthesized	2 mM	No	Ref 2
	(MB-based				
2	011gonucleotide)	Synthesized	2M	No	Dof 2
5	-CuInS2 QDs	Synthesized	3 μινι	INO	Kel 3
4	Aptamer DNA-tem-	Synthesized	0.44 and 0.65	No	Ref 4
	plated silver		mM		
_	nanoclusters (Ag NCs)				
5	Gold nanocrosses and	Synthesized	0.27 mM	No	Ref 5
6	S1 puelease EAM	Synthesized	2.2 µM	No	Def 6
0	labeled ssDNA (DNA.	Synthesized	5.2 µlvi	INU	Kel 0
	F) and graphene oxide				
7	Cysteamine capped CdS	Synthesized	17 μM	No	Ref 7
	quantum dots	5			
8	Sensor 1 (pincer-like	Synthesized		Yes	Ref 8
	benzene-bridged sensor				
	1 with a pyrene excimer				
	as a signal source and				
	as a phosphate apion				
	receptor)				
9	Pyrene-based zinc	Synthesized		Yes	Ref 9
	complexes (Compound				

Table T1: Comparison of performance of the various fluorescence based sensors for ATP¹⁻¹¹

	1 and Compound 2)				
10	4-(9-anthryl)phenyl terpyridine	Synthesized		Yes	Ref 10
11	KMG-301 (rosamine probe)	Synthesized		Yes	Ref 11
12	Thioflavin-T-Sulfated beta cyclodextrin-Zn ²⁺ system	Commercial	1.3 μM	Yes	Present Work

References

1. Liu, Z.; Chen, S.; Liu, B.; Wu, J.; Zhou, Y.; He, L.; Ding, J.; Liu, J. Intracellular Detection of ATP Using an Aptamer Beacon Covalently Linked to Graphene Oxide Resisting Nonspecific Probe Displacement. *Anal. Chem.* **2014**, *8624*, 12229-12235.

2. Park, J. W.; Byeang, Y. P.; H., K. Quencher-free molecular aptamer beacons (QF-MABs) for detection of ATP. *Bioorganic & Medicinal Chemistry Letters* **2015**, *25* (20), 4597-4600.

3. Hu, T.; Na, W.; Yan, X.; Su, X. Sensitive fluorescence detection of ATP based on host-guest recognition between near-infrared β -Cyclodextrin-CuInS2 QDs and aptamer. *Talanta* **2017**, *165*, 194-200.

4. Xu, J.; Wei, C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. *Biosensors and Bioelectronics* **2017**, *87*, 422-427.

5. Zhang, R.; Sun, J.; Ji, J.; Pi, F.; Xiao, Y.; Zhang, Y.; Sun, X. A novel "OFF-ON" biosensor based on nanosurface energy transfer between gold nanocrosses and graphene quantum dots for intracellular ATP sensing and tracking. *Sensors and Actuators B: Chemical* **2019**, *282*, 910-916.

6. Liu, Z.; Zhong, Y.; Hu, Y.; Yuan, L.; Luo, R.; Chen, D.; Wu, M.; Huanga, H.; Li, Y. Fluorescence strategy for sensitive detection of adenosine triphosphate in terms of evaluating meat freshness. *Food Chemistry* **2019**, *270*, 573-578.

 Tedsana, W.; Tuntulani, T.; Ngeontae, W. A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots. *Analytica Chimica Acta*. 2013, 783, 65– 73

8. Xu, Z.; Singh, N. J.; Pan, J.; Kim, H. N.; Park, S. Y.; Kim, K. S.; Yoon, J. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometricfluorescent sensing of ATP at physiological pH. *J. Am. Chem. Soc.* **2009**, *131*, 15528–15533.

9. Xu, Z.; Spring, D. R.; Yoon, J. Fluorescent Sensing and Discrimination of ATP and ADP Based on a Unique Sandwich Assembly of Pyrene-Adenine-Pyrene. *Chem. Asian J.* **2011**, *6*, 2114 – 2122.

10. Sun, Q.; Liu, W.; Shang, W.; Zhang, H.; Xue, S.; Yang, W. Improved colorimetric dual-emission and endued piezofluorochromism by inserting a phenyl between 9-anthryl and terpyridine. *Dyes and Pigments* **2016**, *128*, 124-130.

11. Schwartz, S. C.; Pinto-Pacheco, B.; Pitteloud, J.-P.; Buccella, D. Formation of Ternary Complexes with MgATP: Effects on the Detection of Mg2+ in Biological Samples by Bidentate Fluorescent Sensors. *Inorg. Chem.* **2014**, *536*, 3204-3209.