Electronic Supplementary Information

Toehold-regulated Competitive Assembly to Accelerate Kinetics of Graphene Oxide-based Biosensors

Huan Du,^a Junbo Chen,^a Jie Zhang^b, Rongxing Zhou^b, Peng Yang,^a Xiandeng Hou,^{*a,c} Nansheng Cheng^{*b}

a. Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.

b. Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu 610041, China.

c. Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.

*Corresponding authors. E-mail: houxd@scu.edu.cn, nscheng2002@163.com

Oligonucleotides			Sequences (5' \rightarrow 3')				
Oligonucleotides used in the principle of toehold-regulated competitive assembly(A)							
Strategy A	Reporter-1		AGG AA GGC AAC TCA-FAM				
	Correction strand-1		AGG AA GGC AAC TCA				
	Target-1		TGA GTT GCC TT CCT				
	BT (blocker on target-1)		GGC AAC TCA				
	BT/TB (blocker on target-1)		GGC AAC TCA GTT				
	Evaluation of length of toehold in target/blocker in strategy A-b						
	Toe-3		AAG GCA ACT CA GTT				
	Toe-4		AG GCA ACT CA GTT				
	Toe-5		GGC AAC TCA GTT				
	Toe-6		GCA ACT CA GTT				
	Reporter-2		AAG GCA GTA CGG AA GGC AAC TCA-FAM				
	Correction strand-2		AAG GCA GTA CGG AA GGC AAC TCA				
	BR (blocker on reporter -2)		CTT CCG TAC				
	Target-2		TGA GTT GCC TTC CGT ACT GCC TT				
	BT (blocker on target-2)		GGC AAC TCA				
Strategy B	BT/TB (blocker on target-2)		GGC AAC TCA GTT				
	Evaluation of length of toehold in target/blocker in strategy B-c						
	Toe-11		GAA GGC AAC TCA GTT				
	Toe-12		AA GGC AAC TCA GTT				
	Toe-13		AG GCA ACT CA GTT				
	Toe-14		G GCA ACT CA GTT				
	Toe-15		GCA ACT CA GTT				
	Optimism of TR and BR on reporter-2 in strategy-B						
	Blocker with 3	ТЗ-В8	CG TAC TGC				
		Т3-В9	CCG TAC TGC				

Table S1. All the DNA sequences used in this work

	toehold to	T3-B10	T CCG TAC TGC	
		T3-B11	TT CCG TAC TGC	
	reporter-2	T3-B12	CTT CCG TAC TGC	
	(Toe-3)			
		T4-B8	CCG TAC TG	
	Blocker with 4	Т4-В9	T CCG TAC TG	
	toehold to	T4-B10	TT CCG TAC TG	
	reporter	T4-B11	CTT CCG TAC TG	
	-2(Toe-4)	T4-B12	C CTT CCG TAC TG	
	Blocker with 5	T5-B8	T CCG TAC T	
	toehold to	Т5-В9	TT CCG TAC T	
	reporter	T5-B10	CTT CCG TAC T	
Strategy B	-2(Toe-5)	T5-B11	C CTT CCG TAC T	
		T5-B12	GC CTT CCG TAC T	
	Blocker with 6	T6-B8	TT CCG TAC	
	toehold to	Т6-В9	CTT CCG TAC	
	reporter	T6-B10	C CTT CCG TAC	
	-2(Toe-6)	T6-B11	GC CTT CCG TAC	
	Blocker with 7	T7-B8	CTT CCG TA	
	toehold to	Т7-В9	CCT TCC GTA	
	reporter	T7-B10	G CCT TCC GTA	
	-2(Toe-7)			
	Blocker with 8	T8-B8	CCTT CCG T	
	toehold to	Т8-В9	G CCT TCC GT	
	reporter			
	-2(Toe-8)			
Oligonucleoti	des used in throm	bin detection		
	29-mer aptam	ner reporter	AGT CCG TGG TAG GGC AGG TTG GGG	
Strategy A-			TGA CT-FAM	
proteins				
	Blocker of Apa	atamer	TGC CCT ACC	
Strategy B-			CC ATC CCG T	
proteins	Blocked aptar	ner reporter	AGT CCG T <mark>GG TAG GGC A</mark> GG TTG GGG	
			TGA CT-FAM	

Fig. S1 Investigation of GO concentration for quenching fluorophore reporter-1 in strategy A, reporter-2 in strategy B and aptamer reporter. 10 μ g/mL GO for strategy A and 8 μ g/mL GO for strategy B. Error bars showed the standard deviations of three paralleled samples. GO and reporters were incubated at room temperature for an hour, and then transferred to the 96-well microplate for endpoint fluorescence measurement. The excitation and the emission wavelengths are 485 nm and 520 nm, respectively.

Fig.S2 The effect of toehold format on competitive assembly (strategy A). Control-Cs contained GO (10 µg/mL), reporter-1 (200 nM) and correction strand-1 (200 nM); Control-A-a contained GO (10 µg/mL), reporter-1 (200 nM) and correction strand-1-BT (200 nM); Control-A-b contained GO (10 µg/mL), reporter-1 (200 nM) and correction strand-1-BT/TB (200 nM); Signal-Cs contained GO (10 µg/mL), reporter-1 (200 nM) and Target-1 (200 nM); Signal-A-a contained GO (10 µg/mL), reporter-1 (200 nM) and Target-1-BT (200 nM); Signal-A-b contained GO (10 µg/mL), reporter-1 (200 nM) and Target-1-BT (200 nM); Signal-A-b contained GO (10 µg/mL), reporter-1 (200 nM) and Target-1-BT (200 nM); Signal-A-b contained GO (10 µg/mL), reporter-1 (200 nM) and Target-1-BT (200 nM); They were transferred to the 96-well microplate at RT for one hour fluorescence measurement. The excitation and the emission wavelengths are 485 nm and 520 nm, respectively.

Fig.S3 The effect of dual-toehold format on competitive assembly (strategy B). Control-B-a contained GO (10 µg/mL), blocked reporter-2 (200 nM) and correction strand-2 (200 nM); Control-B-b contained GO (10 µg/mL), blocked reporter-2 (200 nM) and correction strand-2-BT (200 nM); Control-B-c contained GO (10 µg/mL), reporter-1 (200 nM) and correction strand-2-BT/TB (200 nM); Signal-B-a contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2 (200 nM); Signal-B-b contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT/TB (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT/TB (200 nM); Signal-B-c contained GO (10 µg/mL), blocked reporter-2 (200 nM) and Target-2-BT/TB (200 nM); They were transferred to the 96-well microplate at RT for one hour fluorescence measurement. The excitation and the emission wavelengths are 485 nm and 520 nm, respectively.

Fig.S4 The effect of length of toehold (TT) in target/blocker in strategy A-b. The mixtures contained 10 μ g/mL GO, 200 nM reporter-1 and 200 nM target/blocker with different toeholds. Then they were incubated at room temperature for an hour, and then transferred to the 96-well microplates for endpoint fluorescence measurement. The optimal one was toehold-5 (Toe-5). All the data were recoded with the excitation and emission wavelength of 485 nm and 520 nm, respectively, and from at least three independent experiments.

Fig.S5 The effect of length of toehold (TT) in target/blocker in strategy B-c. The mixtures contained 10 μ g/mL GO, 200 nM reporter-2 and 200 nM target/blocker with different toeholds. Then they were incubated at room temperature for an hour, and then transferred to the 96-well microplates for endpoint fluorescence measurement. The concentration of target-c was 200 nM. The optimal one was toehold-14 (Toe-14). All the data were recoded with the excitation and emission wavelength of 485 nm and 520 nm, respectively, and from at least three independent experiments.

Fig.S6 Evaluation effect of length of toehold in reporter/blocker in strategy B. The mixture contained 10 μ g/mL GO, 200 nM reporter-2 with different length of blocker (BR) and toehold (TR), and 200 nM Target-2-BT/TB. They were incubated at room temperature for an hour, and then transferred to the 96-well microplates for endpoint fluorescence measurement. The optimal one was blocker-9/toehold-7 (T7-B9). All the data were recoded with the excitation and emission wavelength of 485 nm and 520 nm, respectively, and from at least three independent experiments.

Fig.S7 Kinetics of C/t curves of six strategies: Cs, A-a, A-b, B-a, B-b, B-c. Target concentration (C) was set as a function of time (t). According to the kinetics equation: $[target bound]_t = [target bound]_{max} *e^{kobs*t}$, the initial targets concentrations were 1 nM, when t=40 min, the target concentration of each strategy were 24.0 nM, 19.4 nM, 17.5 nM, 15.8 nM, 15.1 nM, 10.2 nM, so according to the kinetics equation, the calculated k_{obs} values of strategy Cs, A-a, A-b, B-a, B-b, B-c were 0.058 min-1, 0.067 min⁻¹, 0.069 min⁻¹, 0.071 min⁻¹, 0.074 min⁻¹, 0.080 min⁻¹, respectively.

Fig.S8 Evaluations of performance of toehold-accelerated sensor based thrombin detection in four kinds of buffers at pH 7.7. The mixture with different buffers were incubated at room temperature for an hour, and then transferred to the 96-well microplates for endpoint fluorescence measurement. The thrombin concentration was 100 nM. All the data were recoded with the excitation and emission wavelength of 485 nm and 520 nm, respectively, and from at least three independent experiments.

	1	1			
Туре	Sensitivity	Detction	Selectivity	Amplification	Ref.
		time	(target:	strategy	
			interferents),		
			Discrimination		
			fator ^[1]		
	$\approx 10 \text{ nM for}$		Thrombin		Angew. Chem.
premixing	DNA	Slow	(1:1),	No	Int. Ed. 2009,
	$\approx 2 \text{ nM for}$	(0.5 h)	4	amplification	48,4785.
	thrombin				
	≈1 nM		Cysteine		Biosens.
premixing	for DNA	Slow	(1:1),	No	Bioelectron.
		(0.6 h)	4	amplification	2011, 26 (7),
					3260-3265.
	22.8 pM	Slow	Thrombin	CHA &	ACS Sensors
premixing	for	(2.7 h)	(1:1),	enzyme	2018, 3 (11),
	thrombin	(2.7 II)	4	amplification	2423-2431.
	100 pM for	Slow	miRNA	HCR	ACS Appl.
postmixing	miRNA	(4.5 h)	(1:1),	amplification	Mater.
			2.5		Interfaces
					2012, 4 (12),
					6450-3.
	100 pM for		Adenine	No	Adv. Funct.
postmixing	DNA	Rapid	(1:1),	amplification	Mater.
		(minutes)	3.5		2010, 20,
					453-459.
premixing	≈ 1 nM for		Thrombin		
	DNA	Rapid	(1:20),	No	This work
	$\approx 10 \text{ nM for}$	(minutes)	3	amplification	
	thrombin				

Table S2 GO-based biosensor for nucleic acid and protein sensing

[1] Discrimination factor equals to the signal intensity ratio of target to interferents