Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

## Supporting Information

for

## Comparative release kinetics of small drugs (ibuprofen and acetaminophen) from multifunctional mesoporous silica nanoparticles

Eun-Bi Lim, Tran Anh Vy, Sang-Wha Lee\*

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea \*E-mail: Lswha@gachon.ac.kr, TEL: +82-31-750-5360



**Fig. S1.** (a) The UV-VIS spectrum of Ibuprofen in ethanol, (b) the linear part of the standard curve of ibuprofen absorption at 264nm in ethanol over concentration ranges (3-12 mg/mL), (c) UV-Vis absorption spectra of the solution before and after loading ibuprofen by MSNs, (d) UV-Vis absorption spectra of the solution before and after loading ibuprofen by FMSNs.



**Fig. S2.** (a) The UV-VIS spectrum of Ibuprofen in PBS, (b) Linear part of the standard curve of ibuprofen absorption at 222 nm in PBS: concentration ranges from 0.002 to 0.02 wt%.



**Fig. S3.** (a) The UV-VIS spectrum of Acetaminophen in PBS, (b) Linear part of the standard curve of acetaminophen absorption at 243 nm in PBS: concentration ranges from 0.0004 to 0.004 wt%.



**Fig. S4.** Absorbance profiles of released Ibuprofen from MSNs in PBS at 37 °C; (a) the correlation between cumulative release fraction and release times; (c) the model fits of release kinetics of MSNs-Ibu by the exponential Fickian model.



**Fig. S5.** The Model fits of (a) Ibuprofen and (b) Acetaminophen release from FMSNs-Drug@PDA in PBS at 37 °C by the Higuchi model versus cumulative time or square root time.



**Fig S6.** The comparative release rate of acetaminophen and ibuprofen of FMSNsdrug@PDA@GO at different pHs.

 Table S1. Physicochemical properties of as-prepared samples measured by BET-BJT, DLS

 and SEM instruments.

| Particle type | BET- BJH method                                      |                                                   |                                 | SEM                   | DLS                |
|---------------|------------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------------|--------------------|
|               | surface<br>area <sup>1)</sup><br>(m <sup>2</sup> /g) | Pore volume <sup>2)</sup><br>(cm <sup>3</sup> /g) | Pore size <sup>2)</sup><br>(nm) | Particle size<br>(nm) | Particle size (nm) |
| MSNs          | 209                                                  | 0.46                                              | 8.7                             | $125 \pm 5$           | $124 \pm 10$       |
| FMSNs         | 3391                                                 | 4.00                                              | 4.7                             | $123 \pm 3$           | $123 \pm 2$        |
| FMSNs@PDA     | -                                                    | -                                                 | -                               | 127 ± 5               | $126 \pm 14$       |
| FMSNs@PDA@GO  | -                                                    | -                                                 | -                               | $129 \pm 2$           | $129 \pm 9$        |

1) The surface area was estimated according to the BET method.

2) The pore size and pore volume were estimated by the BJH analysis.

**Table S2.** The summary of fitted parameter values of kinetic models applied to the releasedata of MSNs-Drug@A-F, MSNs-Drug@A-F@PDA, MSNs-Drug@A-F@PDA@GO (A:Fick's law, B: Higuchi model, C: K-P model)

| Case | As-prepared MSNs         | Diffusion<br>models | Formula                           | Parameters                     |
|------|--------------------------|---------------------|-----------------------------------|--------------------------------|
| A    | FMSNs-Ibu                | Fick's law          | $F_t/F_{\infty} = 1 - e^{-k_F t}$ | $k_{\rm F} = 0.38$             |
|      | FMSNs-Acet               | Fick's law          | $F_t/F_\infty = 1 - e^{-k_F t}$   | $k_{\rm F} = 0.62$             |
| B    | EMSNa Ibu@DDA@CO (pU74)  | Higuchi model       | $F_t/F_{\infty} = k_H t^{1/2}$    | $k_{\rm H1} = 23.62$           |
|      | FMSNS-IDU@PDA@OO (pn7.4) |                     |                                   | $k_{H2} = 8.87$                |
|      | FMSNs-Ibu@PDA@GO (pH5.5) | Higuchi model       | $F_t/F_\infty = k_H t^{1/2}$      | $k_{\rm H} = 32.04$            |
|      | FMSNs-Acet@PDA@GO        | Higuchi model       | $F_t/F_\infty = k_H t^{1/2}$      | $k_{\rm H} = 25.40$            |
|      | FMSNs-Ibu@PDA            | Higuchi model       | $F_t/F_\infty = k_H t^{1/2}$      | $k_{\rm H} = 32.96$            |
|      | FMSNs-Acet@PDA           | Higuchi model       | $F_t/F_\infty = k_H t^{1/2}$      | $k_{\rm H} = 31.26$            |
| С    | FMSNs-Ibu@PDA            | K-P model           | $F_t/F_\infty = k_R t^n$          | $k_{\rm R} = 19.61,  n = 0.47$ |
|      | FMSNs-Acet@PDA           | K-P model           | $F_t/F_\infty = k_R t^n$          | $k_{\rm R} = 15.00, n = 0.62$  |

\* K-P model indicate the Korsmeyer-Peppas model.

\*\* Ibu indicates Ibuprofen.

\*\*\*Acet indicates Acetaminophen.