Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Bioinspired design of amphiphilic particles with tailored compartments for dual-drug controlled release

Juanrong Qin, Zeke Li, Botao Song*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of

Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.

Corresponding author: Botao Song (E-mail : botaosong@nwu.edu.cn)

J. Qin and Z. Li contribute equally to this work.

1. Supplementary figures

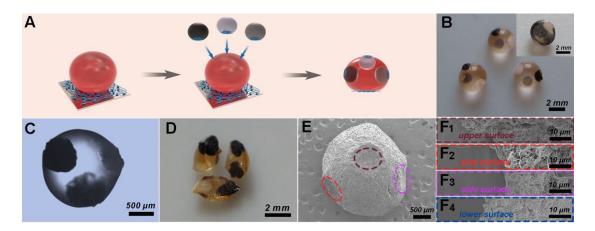


Figure S1. (A) Schematic illustration of the fabrication process for amphiphilic particles with four compartments; (B-F) Digital image, optical image, cross-section image, and SEM images of the four compartmental amphiphilic particles.

Α в 100 100 Multicompartmental particles with only Fe₂O Multicompartmental particles with only PDA with only PDA with only Fe_O **RHB Release (%)** 80 80 FLU Release (%) 60 60 40 40 20 20 0 0 80 120 160 40 120 160 200 40 80 200 Ó Time (min) Time (min)

Figure S2. (A) FLU and (B) RHB release profiles of the amphiphilic multicompartmental particles with only

magnetic nanoparticles and amphiphilic multicompartmental particles with only PDA nanoparticles.

2. Supplementary video

Movie S1. Amphiphilicity induced self-assembly of a black amphiphilic particle into a large-sized amphiphilic particle to achieve a bicompartmental structure.