Supporting information

Lysosome-targeted Near-Infrared Fluorescence Probe for Imaging Endogenous Cysteine (Cys) in Living Cells

Songtao Cai,^a Chang Liu,^b Xiaojie Jiao,^b Liancheng Zhao,^a and Xianshun Zeng*^{a,b}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. ^b Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Fax: (+86)22-60215226; Tel: (+86)22-60216748; E-mail: <u>xshzeng@tjut.edu.cn</u>

Contents

Table S1. Comparison of the reported Cys probes in the literature

- Fig. S1. -Kinetic analysis
- Fig. S2. –Absorption and fluorescence spectra of SHCy-C in presence of analytes
- Fig. S3. –Color change of SHCy-C in absence and presence of Cys
- Fig. S4. –Absorbance and fluorescence intensity versus Cys concentration

Fig. S5. –The fluorescence spectra of SHCy-C upon addition of different concentrations of Cys (0-120 μM) in ethanol/PBS

Fig. S6. –Fluorescence responses of **SHCy-C** for the detection of Cys in different pH solutions and in presence of other analytes

- Fig. S7. –HPLC spectrum
- Fig. S8. –Mass spectrum
- Fig. S9.–¹H NMR spectra of SHCy-C in the abaence and presence of Cys
- Fig. S10. –Cell viability
- Fig. S11. –Fluorescence microscope images of SHCy-C for sensing Cys in living cells
- Fig. S12. –Fluorescence microscope images of SHCy-C with organelle markers
- Fig. S14. –Fluorescence microscope images of SHCy with organelle markers
- Fig. S14.-S19. ¹H, ¹³ C NMR and mass spectra

Structrure of sensors	Cys selectivity	λ_{em}	Organelle- targeted ability	Reference
$\left(\begin{array}{c} 0_{2}N\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	Poor	584 nm	Lysosomes	Org. Biomol. Chem., 2015, 13 , 8163
$\overset{O_2N}{\underset{\mathcal{O}}{\overset{\mathcal{O}_2}}{\overset{\mathcal{O}_2}}{\overset{\mathcal{O}_2}{\overset{\mathcal{O}_2}}{\overset{\mathcal{O}_2}{\overset{\mathcal{O}_2}{\mathcal{O$	Poor	540 nm	Lysosomes	Scientific Reports, 2016, 6 , 19562
	Good	498 nm	Lysosomes	Anal. Chem., 2018, 90 , 7018
J.L.J. HO	Good	625 nm	NO	Chem. Sci., 2012, 3 , 2760
$\left\langle \begin{array}{c} & & \\ & $	Good	590 nm	NO	Biosens. Bioelectron., 2011, 26 , 3012
	Good	748 nm	NO	<i>RSC Adv.,</i> 2014, 4 , 8360
$F_{5C} \rightarrow S \rightarrow F_{5C} \rightarrow F_{5C}$	Poor	650 nm	NO	Anal. Chem., 2014, 86 , 1800

Table S1 Comparison of the reported Cys probes in the literature

Good	706 nm	NO	<i>RSC Adv.,</i> 2014, 4 , 46561
Good	697 nm	NO	Anal. Chem., 2015, 87 , 4856
Good	735 nm	Mitochondria	ACS Appl. Mater. Interfaces, 2015, 7, 27968
Good	760 nm	NO	<i>Anal. Chem.,</i> 2018, 90 , 1014
Good	765 nm	Lysosomes	In this paper

Determination of the fluorescence quantum yield

Fluorescence quantum yields (Φ_l) of **SHCy-C** and **SHCy** were determined by using rhodamine B (Φ_B = 0.73) ^{s1} as the fluorescence standard. The quantum yield was calculated using the following equation.

$$\Phi_{1} = \Phi_{B} \times \frac{Abs_{B} \times F_{1} \times \lambda ex_{B} \times \eta_{1}^{2}}{Abs_{1} \times F_{B} \times \lambda ex_{1} \times \eta_{B}^{2}}$$

Where Abs is the absorbance at the excitation wavelength, F is the area under the corrected emission curve, and η is the refractive index of the solvent used. Subscripts 1 and B refer to the **SHCy-C/SHCy** and to the standard, respectively.

Fig. S1. Pseudo first-order kinetic plot of reaction of probe **SHCy-C** (5 μ M) with (a) Cys (50 μ M), for $k = 276 \text{ M}^{-1}\text{s}^{-1}$; with (b) Hcy (50 μ M), for $k = 69.8 \text{ M}^{-1}\text{s}^{-1}$; with (c) GSH (50 μ M), for $k = 118.4 \text{ M}^{-1}\text{s}^{-1}$; respectively.

Fig. S2. The UV-Vis absorption spectra (a) and fluorescence emission spectra (b) of **SHCy-C** (5 μ M) with the addition of 10 eq. various analytes (Cys, Hcy, GSH, Val, Try, Ala, Arg, Ser, Leu, His, Lys, Phe, Pro, Glu, Tyr), 1 eq. cations (Ca²⁺, Fe²⁺, Cu²⁺,Zn²⁺) and 1 eq. anion (S²⁻). Note: after interacted with analytes for 5 min, each spectrum of **SHCy-C** was recorded $\lambda_{ex} = 700$ nm.

Fig. S3. The color of SHCy-C (5 μ M) in the absence and presence of Cys (50 μ M).

Fig. S4. The linear relationship between the absorbance a) and fluorescence intensity b) of SHCy-C (5 μ M) and the Cys concentration ranging from 0-50 μ M and 0-2.0 μ M, respectively.

Fig. S5. The FL titration of **SHCy-C** (5 μ M) upon addition of different concentrations of Cys (0-120 μ M) in ethanol/PBS (1/4, v/v, 10 mM, pH 7.4). Each spectrum of **SHCy-C** was recorded at 5 min after the addition of Cys. Inset: the fluorescence ratio (F768/F730) of **SHCy-C** upon addition of Cys. $\lambda_{ex} = 630$ nm.

Fig. S6. a) Fluorescence ratio changes at 770 nm of **SHCy-C** (5 μ M) to Cys (10 μ M) in the presence of other analytes (1-20: Cys, Hcy, GSH, Val, Try, Ala, Arg, Ser, Leu, His, Lys, Phe, Pro, Glu, Tyr, Ca²⁺, Fe²⁺,Cu²⁺,Zn²⁺, S²⁻); b) Fluorescence intensity at 770 nm of **SHCy-C** (5 μ M) in the absence and presence of Cys (10 μ M) in the pH range of 3-10. Note: After interacted with Cys for 15 min, the fluorescence intensity of **SHCy-C** were recorded. $\lambda_{ex} = 700$ nm.

Fig. S7. HPLC chromatograms of **SHCy** and **SHCy-C**. a) **SHCy-C**; b) the reactant of **SHCy-C** with 20 equiv. Cys for 5 min; c) the reactant of **SHCy** with 20 equiv. Cys for 5 min; The mobile phase was MeOH/MeCN (v/v, 4/1).

Fig. S8. HRMS of the probe SHCy-C with addition of 2.0 equiv. Cys for 2 hours.

Fig. S9. ¹H NMR spectra of SHCy-C in the abaence and presence of Cys (2, 5, and over 10 equiv.).

Fig. S10. Cell viability estimated by MTT proliferation tests versus incubation concentrations of SHCy-C.

Fig. S11. The fluorescence imaging of **SHCy-C** in living Hela cells. a) Hela cells were treated with **SHCy-C** (0.2 μ M) for 20 min; b) Hela cells pretreated with 1 mM NEM for 20 min and followed by incubation with **SHCy-C** (0.2 μ M) for another 20 min; c) Hela cells pretreated with 1 mM NEM for 20 min and followed by incubation with **SHCy-C** (0.2 μ M) for another 20 min; c) Hela cells pretreated with 1 mM NEM for 20 min and treated with **SHCy-C** (0.2 μ M) for another 20 min, $\lambda_{ex} = 635$ nm, $\lambda_{em} = 700-800$ nm, scale bar is 20 μ m.

Fig. S12. Colocalization fluorescence images of **SHCy-C** with different organelle-trackers. a) Fluorescence images of **SHCy-C** (2 μ M) with Lyso-Tracker Green DND-26 (0.2 μ M, λ_{ex} = 488 nm, λ_{em} = 512-552 nm); b) Fluorescence images of **SHCy-C** (2 μ M) with Mito-Tracker Green (0.2 μ M, λ_{ex} = 488 nm, λ_{em} = 512-548 nm); c) Fluorescence images of **SHCy-C** (2 μ M) with Golgi-Tracker (0.2 μ M, λ_{ex} = 488 nm, λ_{em} = 503-539 nm); d) Fluorescence images of **SHCy-C** (2 μ M) with ER-Tracker (0.2 μ M, λ_{ex} = 488 nm, λ_{em} = 514-550 nm). Scale bar is 10 μ m

Fig. S13. Colocalization fluorescence images of the NIR dye **SHCy** with different organelletrackers (0.2 μ M). a) Fluorescence images of **SHCy** (1 μ M) with Lyso-Tracker Green DND-26 (λ_{ex} = 488 nm, λ_{em} = 520-550 nm); b) Fluorescence images of **SHCy** (1 μ M) with Mito-Tracker Green (λ_{ex} = 488 nm, λ_{em} = 520-550 nm). Scale bar is 20 μ m.

Fig. S14. ¹H NMR of SHCy

Fig. S15. ¹³C NMR of SHCy

Fig. S16. HRMS of SHCy

Fig. S17. ¹H NMR of SHCy-C

Fig. S18. ¹³C NMR of SHCy-C

Fig. S19. HRMS of SHCy-C

References

S1. T. Karstens and K. Kobs, J. Phys. Chem., 1980, 84, 1871-1872.