Supporting Information

A novel fluorescent "on-off-on" assay for discriminative detection of Cu(II) and L-cysteine based on red-emissive Si-CDs and cellular imaging application

Minghui Zan^{a,d,#}, Cong Li^{a,#}, Daoming Zhu^a, Lang Rao^a, Qian-Fang Meng^a, Bei Chen^a, Wei Xie^a, Xingwang Qie^b, Li Li^b, Xiaojiao Zeng^c, Yirong Li^{*,c}, Wen-fei Dong^{*,b}, Wei Liu^{*,a,d}

^a Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.

^b CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.

^c Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China.

^d Shenzhen Research Institute of Wuhan University, Shenzhen, Guangdong 518057, China.

[#] These authors contributed equally to this work.

* Corresponding authors.

E-mail: wliu@whu.edu.cn (W. Liu).

E-mail: wenfeidong@126.com (W. Dong).

E-mail: liyirong838@163.com(Y. Li).

Figure S1: Size distribution of the Si-CDs.

Figure S2: (A) N 1s XPS of Si-CDs. (B) O 1s XPS of Si-CDs.

Figure S3: Effect of pH value on the PL intensity of Si-CDs system.

Figure S4: Effects of (A) UV irradiation, (B) ionic strength and (C) different temperature on the PL intensity of Si-CDs.

Figure S5: Various metal ions effects on Cu²⁺ determination.

Figure S6: Fluorescence response of the Si-CDs@Cu²⁺ system in the presence of different analytes.

Figure S7: Fluorescence spectra of Si-CDs, Si-CDs+Cu²⁺, and Si-CDs+Cu²⁺+EDTA.

Figure S8: Zeta potential values of the Si-CDs, Si-CDs@Cu²⁺ and Si-CDs@Cu²⁺@L-

Cys.

Figure S9: Cytotoxicity test of Si-CDs@Cu²⁺ on Hela cells viability.

Methods	Linear range	Detection limit	Detection	Reference
	(µM)	(µM)	Wavelength	
Colorimetry	0.1-10.0	0.632		11
Electrochemistry	0.08-2.2	0.0355	_	2 ²
B,N-carbon dots	1-25.0	0.3	green	33
NCDs	10-400	10	blue	44
CNDs	0.6-35.0	0.17	blue	5 ⁵
FIIS	0-70.0	0.11	529 nm	66
Si-CDs	10 ~ 90	0.53	red	This work

Table S1. Different methods for Cu²⁺ detection.

Table S2: Fitted parameters of the FL decay curves of the Si-CDs, Si-CDs@Cu²⁺, Si-CDs@Cu²⁺@L-Cys in aqueous solution. Note: The lifetime was monitored by the emission wavelength at 615 nm.

Sample	τ_1 (ns)	A ₁ (%)	$\tau_2(ns)$	A ₂ (%)	ϕ	$\tau_{avg}\left(ns\right)$
Si-CDs	2.5	75.29	7.9	24.71	1.273	5.25
Si-CDs@Cu ²⁺	2.09	74.11	5.89	25.89	1.203	3.97
Si-CDs@Cu ²⁺ @L-Cys	2.64	74.31	7.71	25.69	1.16	5.19

Sample	Analyte	Add	Found	Recovery	RSD
		(µM)	(µM)	(%)	(n=3, %)
Tap water 1	Cu ²⁺	5	5.03	100.6	2.3
Tap water 2	Cu ²⁺	10	10.28	102.8	1.0
Plasma 1	L-Cys	10	10.43	104.3	1.5
Plasma 2	L-Cys	20	19.84	99.2	3.6

Table S3. Determination of the level of Cu^{2+} ions in tap water samples and L-Cys in human plasma samples.

References :

- 1. L.-J. Miao, J.-W. Xin, Z.-Y. Shen, Y.-J. Zhang, H.-Y. Wang and A.-G. Wu, *Sensors and Actuators B: Chemical*, 2013, **176**, 906-912.
- J. Zhang, C. Cheng, Y. Huang, L. Qian, B. Zheng, H. Yuan, Y. Guo and D. Xiao, *Analyst*, 2013, 138, 2073-2079.
- M.-C. Rong, K.-X. Zhang, Y.-R. Wang and X. Chen, *Chinese Chemical Letters*, 2017, 28, 1119-1124.
- 4. M. Ganiga and J. Cyriac, *ChemPhysChem*, 2016, **17**, 2315-2321.
- W. Lu, Y. Gao, Y. Jiao, S. Shuang, C. Li and C. Dong, *Nanoscale*, 2017, 9, 11545-11552.
- Z. Xu, P. Deng, J. Li and S. Tang, Sensors and Actuators B: Chemical, 2018, 255, 2095-2104.