Supporting Information

A Novel Cross-linked Nanoparticle With Aggregation-induced Emission Properties for Cancer Cells Imaging

Bin Li,^a Tianhong Chen,^b Zhipeng Wang,^d Zhiming Guo,^d Jhair Peña, ^a Lintao Zeng^{*b,c}, Jinfeng Xing^{*a}

^aSchool of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China. E-mail: jinfengxing@tju.edu.cn

^bSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, 300384, China.

^cCollege of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China. E-mail: zlt1981@126.com

^dTianjin Institute of Metrological Supervision and Testing, 300192, China.

Fig. S1 ¹H NMR spectrum of compound HA-Ac under a condition (25 °C , MA:HA=20) in D₂O.

Fig. S2 ¹H NMR spectrum of compound HA-Ac under a condition (0 °C, MA:HA=5) in D₂O.

Fig. S3 ¹H NMR spectrum of compound HA-Ac under a condition (0 °C , MA:HA=20) in D₂O.

Fig. S4 Emission and excitation spectra of HA-Ac-Pha-C in aqueous solution ($\lambda_{ex, max} = 342$ nm, $\lambda_{em, max} = 460$ nm).