## **Supporting information**

## A near-infrared fluorescent probe based on a novel rectilinearly $\pi$ -extended rhodamine derivative and its applications

Jin Gong<sup>†</sup>, Chang Liu<sup>‡</sup>, Xiaojie Jiao<sup>‡</sup>, Song He<sup>‡</sup>, Liancheng Zhao<sup>†</sup>, Xianshun Zeng<sup>\*, †, ‡</sup>

<sup>†</sup> School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001,

China

\* Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China

\*E-mail: xshzeng@tjut.edu.cn

## Table of contents

| Figure S1: Effect of pH on the absorption and fluorescence spectra of <b>RQN</b> .              | S3     |
|-------------------------------------------------------------------------------------------------|--------|
| Scheme S1: Proposed conversions of <b>RQN</b> under different pH                                | S3     |
| Figure S2: Normalized absorption and fluorescence spectra of RQN                                | S3     |
| Table S1: Photophysical properties of <b>RQN</b> in different solvents                          |        |
| Figure S3: Absorption spectra changes of <b>RQNA</b> towards metal ions                         | S4     |
| Figure S4: Color changes of <b>RQNA</b> towards various metal ions                              | S4     |
| Figure S5: Emission spectra changes of <b>RQNA</b> towards ROS and RNS                          | S4     |
| Scheme S2: Mechanism of <b>RQNA</b> reacts with Cu <sup>2+</sup>                                | S5     |
| Figure S6: HRMS of <b>RQNA</b> in the presence of $Cu^{2+}$ ions                                | S5     |
| Figure S7: Job's plot of <b>RQNA</b> and Cu <sup>2+</sup>                                       | S5     |
| Figure S8: Absorption spectra changes of <b>RQNA</b>                                            | S5     |
| Figure S9: The fluorescence dissociation constant ( $K_d$ ) of <b>RQNA</b> for Cu <sup>2+</sup> | S6     |
| Figure S10: Effect of pH on the fluorescence intensity of probe <b>RQNA</b>                     | S6     |
| Figure S11: MTT assay of <b>RQNA</b>                                                            | S6     |
| Figure S12: Intensity profiles of respective tracker-probe with <b>RQNA</b>                     | S7     |
| <sup>1</sup> H, <sup>13</sup> C NMR spectra and HRMS of compounds                               | S7-S14 |
| Reference                                                                                       |        |



Figure S1. Absorption a) and fluorescence spectra b) of **RQN** (10 mM) in water under different pH conditions.  $\lambda_{ex}$ : 580 nm, slit: 5/5 nm



Scheme S1. Proposed conversions of RQN in water under different pH conditions.



Figure S2. Normalized UV–Vis absorption a) and fluorescence b) spectra of **RQN** in different solvents in the presence of TFA (1%).

Table S1. Photophysical properties of **RQN** in different solvents in the presence of TFA (1%).

| Dyes | Solvent            | $\lambda_{Abs}$ (nm) | λ <sub>em</sub><br>(nm) | $\frac{\epsilon_b}{(M^{-1} \text{ cm}^{-1})}$ | Stocks<br>Shift<br>(nm) | $\Phi^{a}$ |
|------|--------------------|----------------------|-------------------------|-----------------------------------------------|-------------------------|------------|
| RQN  | DCM                | 615                  | 658                     | 25400                                         | 43                      | 0.117      |
|      | CH <sub>3</sub> CN | 607                  | 647                     | 28300                                         | 40                      | 0.096      |
|      | H <sub>2</sub> O   | 600                  | 648                     | 10900                                         | 48                      | 0.116      |
|      | DMF                | 623                  | 681                     | 29000                                         | 58                      | 0.086      |
|      | DMSO               | 627                  | 683                     | 26600                                         | 56                      | 0.106      |
|      | EtOH               | 613                  | 664                     | 32800                                         | 51                      | 0.071      |
| Rh B | EtOH               | 553                  | 572                     | 11700                                         | 19                      | 0.53       |

<sup>*a*</sup> Relative fluorescence quantum yield estimated by using Nile Blue ( $\Phi_B = 0.27$  in ethanol)<sup>1</sup> as a fluorescence standard.



Figure S3. Absorption spectra response of **RQNA** (10  $\mu$ M) upon addition of different species (50  $\mu$ M). 1) Ag<sup>+</sup>; 2) Al<sup>3+</sup>; 3) Ca<sup>2+</sup>; 4) Cd<sup>2+</sup>; 5) Co<sup>2+</sup>; 6) Cr<sup>3+</sup>; 7) Cu<sup>2+</sup>; 8) Fe<sup>2+</sup>; 9) Fe<sup>3+</sup>; 10) K<sup>+</sup>; 11) Li<sup>+</sup>; 12) Mg<sup>2+</sup>; 13) Mn<sup>2+</sup>; 14) Na<sup>+</sup>; 15) Ni<sup>2+</sup>; 16) Pb<sup>2+</sup>; 17) Pd<sup>2+</sup>; 18) Zn<sup>2+</sup>.

| Cu <sup>2+</sup> | Ag⁺              | Al <sup>3+</sup> | Ca <sup>2+</sup> | Cd <sup>2+</sup> | Co <sup>2+</sup> | Cr <sup>3+</sup> | Fe <sup>2+</sup>   | Fe <sup>3+</sup> | K+ |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|----|
| Li+              | Mg <sup>2+</sup> | Mn <sup>2+</sup> | Na⁺              | Ni <sup>2+</sup> | Pb <sup>2+</sup> | Pd <sup>2+</sup> | Zn <sup>2+</sup> F | RQNA             |    |

Figure S4. Color changes of RQNA towards various metal ions.



Figure S5. Fluorescence emission responses of **RQNA** (10  $\mu$ M) upon addition of ROS and RNS (50  $\mu$ M); 1)  ${}^{1}O_{2}$ ; 2) H<sub>2</sub>O<sub>2</sub>; 3) ClO<sup>-</sup>; 4) NO; 5) NO<sub>2</sub><sup>-</sup>; 6) NO<sub>3</sub><sup>-</sup>; 7) Cu<sup>2+</sup>; 8) O<sub>2</sub><sup>-</sup>; 9) •OH; 10) ONOO<sup>-</sup>; 11) TBHP. The conditions: HEPES buffer (10 mM, pH = 7.4, containing 20% CH<sub>3</sub>CN),  $\lambda_{ex} = 575$  nm, slit = 10/10 nm.



Scheme S2. Mechanism of RQNA reacts with Cu<sup>2+</sup>.



Figure S6. HRMS of **RQNA** in the presence of  $Cu^{2+}$ .



Figure S7. Job's plot of **RQNA** and Cu<sup>2+</sup>. The total concentration of **RQNA** and Cu<sup>2+</sup> was kept at a fixed 20  $\mu$ M.



Figure S8. The fluorescence dissociation constant ( $K_d$ ) of **RQNA** for Cu<sup>2+</sup> was calculated based on 1:1 stoichiometry.



Figure S9. The absorption spectra changes of **RQNA** (10  $\mu$ M) treated with increasing concentrations of Cu<sup>2+</sup> (0–70  $\mu$ M). Inset: The plot of the absorption intensities at 598 nm versus the equivalents of Cu<sup>2+</sup>.



Figure S10. Effect of pH on the fluorescence intensity of **RQNA** (10  $\mu$ M) in the absence (black line) and presence (red line) of Cu<sup>2+</sup> (50  $\mu$ M).



Figure S11. MTT assay of RQNA.



Figure S12. Intensity profiles of respective tracker-probe with **RQNA** within the linear regions of interest across the cells. a) Costained with Mito-Tracker Green; b) Costained with Lyso-Tracker Green, c) Costained with Golgi-Tracker Green; d) Costained with ER-Tracker Green.



Figure S13. <sup>1</sup>H NMR spectra of **B** in (CD<sub>3</sub>)<sub>2</sub>CO







 Figure S15. HRMS spectra of **B** 



Figure S16. <sup>1</sup>H NMR spectra of C in CDCl<sub>3</sub>



Figure S17. <sup>13</sup>C NMR spectra of C in CDCl<sub>3</sub>



Figure S18. HRMS spectra of C



Figure S19. <sup>1</sup>H NMR spectra of  $\mathbf{D}$  in CDCl<sub>3</sub>



Figure S20. <sup>13</sup>C NMR spectra of **D** in CDCl<sub>3</sub>



Figure S21. HRMS spectra of **D** 



Figure S22. <sup>1</sup>H NMR spectra of **RQN** in CDCl<sub>3</sub>



Figure S23. <sup>13</sup>C NMR spectra of **RQN** in CDCl<sub>3</sub>



Figure S24. HRMS spectra of RQN



Figure S25. <sup>1</sup>H NMR spectra of **RQNA** in CDCl<sub>3</sub>



Figure S26. <sup>13</sup>C NMR spectra of RQNA in CDCl<sub>3</sub>



Figure S27. HRMS of RQNA

## **Reference:**

1. R. Sens, K. H. Drexhage, J. Luminesc., 1981, 24, 709.