Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

FRET-Based Supramolecular Nanoprobe with Switch on Red

Fluorescence to Detect SO₂ Derivatives in Living Cells

Lu Jia, Li-Ya Niu,* Ling-Yun Wang, Xinxin Wang and Qing-Zheng Yang*

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

*E-mail: qzyang@bnu.edu.cn. *E-mail: niuly@bnu.edu.cn.

Contents

1.Previous work to detect sulfite	2
2. Experimental Section.	8
2.1 Synthesis of Acceptor HEM-CO-Ph	8
3. Spectra Response	8
4. Mechanism:	11
5. Cell Viability and Cellular Imaging	13
5.1 Exogenous Imaging of Nanoprobe and Sulfite.	13
5.2 Endogenous Imaging of Nanoprobe and Sulfite.	14
5.3 Subcellular Localization of the Nanoprobe	14
6. Appendix Information	15
Reference	16

1. Previous work to detect sulfite

number	Probe Structure	Detection Medium	type	year
1		within the polymer layer in contact with plain citrate buffer and buffered solutions of bisulfite, all at pH = 4.9.	Absorption blue-shift from 524 nm to 484 nm	20021
2		90% water/DMSO solution (pH = 7.2, 10 mM Tris-HCl buffer)	Ratiometric (Absorption blue-shift from 348nm, 366nm, 386nm to 290nm and fluorescence blue-shift from 417 nm to 353 nm)	2009 ²
3	H ^{3C} J L L L	$CH_{3}CN-H_{2}O$ (98:2, v/v) HEPES buffer (pH = 7.0, 10 mM)	Turn-on (absorption red-shift from 359nm to 571 nm and fluorescence at 588 nm)	2010 ³
4		DMSO-acetate buffer (0.1 M, pH = 5.0, 1 : 1, v/v)	Turn-on (absorption at 425 nm and fluorescence at 535 nm)	20124
5	Et ₂ N LLC CN	20% DMF buffer solution. (pH = 7.4)	Ratiometric (Absorption blue-shift from 529nm to 411nm and 368 nm and fluorescence blue- shift from 578 nm to 480 nm)	20135
6	- J. C.C. C. C.	PBS (20 mM, pH = 7.4) containing 1 mM CTAB.	Ratiometric (Absorption blue-shift from 470nm to 390nm and fluorescence blue-shift from 592 nm to 465 nm)	20136
7		PBS buffer (pH = 7.4, 10 mM, containing 30% DMF)	Ratiometric (Absorption blue-shift from 545nm to 463nm to 410nm and fluorescence blue-shift from 633 nm to 478 nm)	2013 ⁷

8	Ê.	MeOH buffer	Ratiometric	2014 ⁸
	S → N [®]	(Na₂HPO₄/	(Absorption blue-shift from	
	<mark>⁄</mark> ų	citric acid, pH = 7.4,	500 nm to 400 nm and	
		30.0 mM, 1:1 v/v)	fluorescence blue-shift from	
			600 nm to 460 nm)	
9		PBS	Turn-on	2014 ⁹
			(absorption blue-shift from	
			392nm to 234 nm, 278 nm	
			and fluorescence at 450 nm	
			increase)	
10	NC CN	HEPES buffer (20 mM	Ratiometric	2014 ¹⁰
		pH = 7.4)	(Absorption blue-shift from	
	LI I V		570nm to 473nm and	
			330nm and fluorescence	
			blue-shift from 663 nm to	
	HONON		523 nm)	
11		PBS buffer (pH = 7.4,	Ratiometric	201411
		10mM, containing	(Absorption blue-shift from	
		30% DMSO)	500nm to 400nm and	
			fluorescence blue-shift from	
			575 nm to 477 nm)	
12		PBS buffer (pH = 7.4,	Ratiometric	2014 ¹²
		10 mM)	(absorption at 310nm and	
	,		360nm decrease and	
			fluorescence blue-shift from	
			571 nm to 465 nm)	
13	$\downarrow \bigcirc$	PBS (pH = 7.4,	Ratiometric	2015 ¹³
		containing 30%	(Absorption blue-shift from	
		EtOH)	570 nm to 420 nm and	
			fluorescence blue-shift from	
			650 nm to 480 nm)	
14		glycerol/PBS = 4/6,	Ratiometric	2015 ¹⁴
		pH=7.40	(Absorption blue-shift from	
	ζ.		499nm to 322nm and	
			fluorescence blue-shift from	
			592 nm to 465 nm)	
15	A CIN	pH = 7.4 (10mM,	Ratiometric	2015 ¹⁵
		containing 30%	(absorption blue-shift from	
		DMF)	487nm to 290nm and	
	A CIL		fluorescence blue-shift from	
			590 nm to 490 nm)	

16	\#_<\	aqueous buffer (10	Turn-on	2016 ¹⁶
		mM PBS, pH = 7.4)	(absorption at 514 nm	
		containing 10% DMF	decrease and fluorescence	
	$\sim \sim N_{\rm e}$		at 500 nm increase)	
17		PBS buffer solution	Ratiometric	2016 ¹⁷
		(pH = 7.0)	(Absorption 520nm and	
	H.		390nm decrease and	
	SO3-		fluorescence blue-shift from	
			590 nm to 450 nm)	
18	Â	EtOH/PBS solution	Ratiometric	2016 ¹⁸
		(v/v = 1/9, pH = 7.4)	(Absorption blue-shift from	
			500nm to 290nm and	
			fluorescence blue-shift from	
			600 nm to 450 nm)	
19		PBS solution (pH =	Ratiometric	2016 ¹⁹
		7.4, containing 20%	(Absorption 510nm and 380	
	Ŭ	EtOH)	nm decrease and	
			fluorescence blue-shift from	
			590 nm to 500 nm)	
20	SO ₃ /	PBS buffer (pH = 7.4,	Ratiometric	2016 ²⁰
		10 mM)	(absorption blue-shift from	
			506nm to 266 nm, 320nm	
			and fluorescence blue-shift	
			to 470 nm)	
21	\sim	PBS (10mM, pH =	Ratiometric	2016 ²¹
		7.4, containing 30%	(absorption at 508nm	
		DMF)	decrease and fluorescence	
			blue-shift from 582 nm to	
			530 nm)	
22	Ô	PBS buffer (20 mM,	Turn on	2016 ²²
		pH = 7.4, containing	(Absorption blue-shift from	
	in the second se	20% DMF)	482nm to 420 nm and	
			fluorescence at 469 nm\554	
			nm)	
	THE I			
	~~			
23		PBS buffer (10 mM,	Ratiometric	2016 ²³
		pH = 7.4, containing	(Absorption blue-shift from	
	<u>ک</u>	25 μM CTAB)	443 nm to 325 nm and	
			fluorescence blue-shift from	
			580 nm to 467 nm)	

24	in ani	DMSO-PBS buffer	Turn-on	2016 ²⁴
		(20 mM, pH = 7.0, 1:	(fluorescence at 695 nm)	
		1, v/v)		
25	O ₂ N	PBS (20 mM, pH = 7.4	Turn off	2016 ²⁵
		with 10% DMSO v/v)	(absorption blue-shift from	
			595nm to 375 nm and	
	-0 ₃ s- _		fluorescence turn off)	
26		PBS buffer (10 mM,	Ratiometric	2017 ²⁶
		pH = 7.4, containing	(Absorption blue-shift from	
	Z=CN	CTAB 1 mM)	628nm to 338nm and	
			fluorescence blue-shift from	
			665 nm to 465 nm)	
27	0	PBS/DMSO (1/1, v/v,	Turn-on	2017 ²⁷
		pH = 7.4)	(fluorescence at 576	
	Et ₂ N • 0 • 0		nm)	
28	N IN	PBS buffer	Ratiometric	2017 ²⁸
		(DMSO:H ₂ O = 3:7, 50	(Absorption blue-shift from	
	<u></u>	mM, pH = 7.4)	550nm to 323nm and	
			fluorescence blue-shift from	
			611 nm to 467 nm)	
29		PBS buffer (10%	Ratiometric	2017 ²⁹
		DMSO v/v, pH = 7.4,	(absorption blue-shift from	
	$(Ph)_{3}P^{*} \checkmark \checkmark \checkmark \circ_{0} \checkmark \checkmark \checkmark$	20 mM)	425nm to 350nm and	
			fluorescence blue-shift from	
			600 nm to 425 nm)	
30		PBS: DMSO = 7:3,	Ratiometric	2017 ³⁰
		v/v, pH = 7.4	(Absorption blue-shift from	
			520 nm to 480 nm and	
			fluorescence blue-shift from	
			720 nm to 545 nm)	
31		PBS solution (50 mM,	Ratiometric	2017 ³¹
		pH = 7.4)	(Absorption blue-shift from	
			475nm to 322nm and	
			fluorescence blue-shift from	
			593 nm to 467 nm)	
32	│ <u>~</u> ~Å	Tris buffer solution	Ratiometric	2017 ³²
	│ ∧ _N ╨╱┟╦╲₀╨	(pH = 7.4, containing	(Absorption blue-shift from	
		70% DMSO v/v)	510nm to 300-375nm and	
			fluorescence blue-shift from	
			560 nm to 510 nm)	

33	n aN a	Britton-Robinson	Turn-off	2017 ³³
	J-L	buffer solution (20		
		mM, pH = 7, 1%		
	~	DMSO)		
	O ₂ N I			
34	+	PBS buffer (10 mM,	Ratiometric	2017 ³⁴
		pH = 7.4, with 10%	(Absorption blue-shift from	
		DMF, v/v)	632nm to 454nm and	
			fluorescence blue-shift from	
			717nm to 560 nm)	
35	- + (5))	CH ₃ CN/H ₂ O (1/1, v/v,	Ratiometric	2017 ³⁵
		HEPES 10 mM, pH =	(absorption at 373nm and	
		7.4)	575nm decrease and	
	s' v		fluorescence blue-shift from	
			695nm to 508 nm)	
36	R	PBS buffer (pH = 7.4,	Ratiometric	2017 ³⁶
		0.01 M, containing	(absorption at 560nm	
		40% DMF)	decrease and fluorescence	
			blue-shift from 589 nm to	
			476 nm)	
37		phosphate buffer	Ratiometric	2018 ³⁷
		solution (1%DMSO,	(Absorption blue-shift from	
		pH = 7.4)	330-570nm to 250-280 nm	
			and fluorescence blue-shift	
			from 550-680 nm to 450-	
			550 nm)	
38	NC, 0	PBS (pH = 7.4, 10	Ratiometric	2018 ³⁸
	NC CN LINN HQ	mM, containing 40%	(Absorption blue-shift from	
	- MELLE	EtOH)	560nm to 335nm and	
			fluorescence blue-shift from	
			641nm to 530 nm)	
39		EtOH/PBS (v/v = 1/4,	Ratiometric	2018 ³⁹
		pH = 7.4)	(Absorption blue-shift from	
			455 nm to 280 nm and	
			fluorescence 552 nm	
			decrease, 460 nm increase)	
40		PBS solution (0.01 M,	Ratiometric	2018 ⁴⁰
		pH = 7.4, 50% DMSO)	(Absorption 475nm	
	U ∨ №		decrease and fluorescence	
			decrease and nuorescence	
			blue-shift from 600 nm to	

41		PBS solution (10 mM,	Turn-on	2019 ⁴¹
		5% DMSO, pH = 5.5)	(absorption at 475 nm	
			decrease and fluorescence	
			at 524 nm increase)	
42		HEPES buffer (10	Ratiometric	201942
		mM, 20% CH₃CN)	(absorption blue-shift from	
			570 nm to 270 nm and	
			fluorescence from 635 nm	
			blue-shift to 425 nm)	
43	۲ ۰	PBS buffer (pH = 5.0,	Ratiometric	2019 ⁴³
		containing 30%	(Absorption blue-shift from	
		EtOH)	613 nm to 426 nm and	
			fluorescence blue-shift from	
			704 nm to 512 nm)	
44		PBS buffer.	Ratiometric	201944
	of N N L Total		(absorption blue-shift from	
	P> N = 0		590 nm to 400-500 nm and	
			fluorescence blue-shift from	
			645 nm to 540 nm)	
45	ſ~Y°¥°	HEPES buffer (10	Ratiometric	2019 ⁴⁵
		mM, pH = 7.4, with	(Absorption blue-shift from	
		10% DMF, v/v)	544 nm to 424 nm and	
			fluorescence blue-shift from	
			749 nm to 490 nm)	
46		EtOH-PBS buffer (10	Dual-emission	2019 ⁴⁶
		mM, pH = 7.4, v/v,	(the absorption blue-shift	
		4:6)	from 493 nm to 319 nm and	
			fluorescence at 450 nm and	
			605 nm increase)	
47		PBS (pH = 7.4)	Turn-on	
(This	\	No organic solvent	(absorption blue-shift from	
work)				-
, nonky	SI F D		590 nm to 390 nm and	
	CI F Donor		590 nm to 390 nm and fluorescence at 615 nm is	
			590 nm to 390 nm and fluorescence at 615 nm is turned on)	
	CI F		590 nm to 390 nm and fluorescence at 615 nm is turned on)	
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		590 nm to 390 nm and fluorescence at 615 nm is turned on)	

The reaction sites to sulfite are labeled by the red line.

Table S1. Comparison of Fluorescent Probes for SO_2 Derivatives

2. Experimental Section.

2.1 Synthesis of Acceptor HEM-CO-Ph.

Scheme S1: The synthesis of acceptor of HEM-CO-Ph.

3. Spectra Response.

Fig. S1. (a) The absorption spectra of hemicyanine-OH (5 μ M) reacted with Na₂SO₃ (250 μ M) in PBS (10 mM PBS, PH = 7.4, containing 50 % acetonitrile, 37°C). (b) The emission spectra of hemicyanine-OH (5 μ M) reacted with Na₂SO₃ (250 μ M) in PBS (10 mM PBS, PH = 7.4, containing 50 % acetonitrile, 37°C).

Fig. S2. (a) The absorption spectra of HEM-CO-Ph (5 μ M) react with Na₂SO₃ (100 μ M) in PBS (10 mM PBS, PH = 7.4, containing 20 % acetonitrile, 37°C). Inset: the color change of HEM-CO-Ph before and after the addition Na₂SO₃ under day light. (b) The emission spectra of HEM-CO-Ph (5 μ M) react with Na₂SO₃ (250 μ M) in PBS (10 mM PBS, PH = 7.4, containing 20 % acetonitrile, 37°C). (Ex = 580 nm slit: 5 nm/10 nm).

Fig. S3. The absorption spectra of HEM-CO-Ph (5 μ M) upon addition of different concentrations of Na₂SO₃(0-110 μ M) in PBS (10 mM PBS, PH = 7.4, containing 20 % acetonitrile, 37 °C) and the liner relationship between absorption intensity and different concentration of Na₂SO₃.

Fig. S4. Time-dependent absorption (left) and emission (right) spectra of BDP (5 μ M) in the presence of (a) GSH (500 μ M), (b) Hcy (500 μ M), (c) Cys (500 μ M) and (d) Na₂SO₃ (250 μ M) in PBS (10 mM PBS, PH = 7.4, containing 50% acetonitrile, 37 °C) (Ex = 580 nm slit: 2.5 nm/2.5 nm).

Figure S5. The emission spectrum of nanoprobe at room temperature. (10 mM PBS, pH = 7.4).

Fig. S6. (a) The emission spectrum of nanoprobe (5 μ M) in the presence of respective species (250 μ M) in PBS (10 mM PBS, PH = 7.4) within 60 min. (b). The emission spectrum at 615 nm of nanoprobe (5 μ M) in the presence of respective species (250 μ M) in PBS (10 mM PBS, PH = 7.4) within 60 min. (c).The absorption of nanoprobe (5 μ M) in the presence of respective species (250 μ M) in PBS (10 mM PBS, PH = 7.4) within 60 min. (c).The absorption of nanoprobe (5 μ M) in the presence of respective species (250 μ M) in PBS (10 mM PBS, PH = 7.4, 37 °C) within 60 min. (d) The absorption in the channel of 650 nm. 1-19: 1-none, 2-GSH, 3-Hcy, 4-Cys, 5-KBr, 6-NaCl, 7-NH₄Cl, 8-NaNO₂, 9-Na₂S₂O₃, 10-NaHS, 11-NaHSO₄.H₂O, 12-L-Asp, 13-L-Ala, 14-L-Leu, 15-Glu, 16-L-His, 17-Na₂S₂O₅, 18-NaHSO₃, 19-Na₂SO₃.

4. Mechanism:

Fig. S7. (1)¹H NMR of HEM-CO-Ph (DMSO-D₆, 600 MHz). (2)¹H NMR of the HEM-CO-Ph-SO₃ (DMSO-D₆: $D_2O = 1:3$, 600 MHz). The sulfite is excessive. (3)¹H NMR comparison of the adduct-SO₃ (METHANOL-D₄: $D_2O = 1:3$, 600MHz). The sulfite is 4 eq. excessive.

Fig. S8. ¹³C NMR comparison of acceptor HEM-CO-Ph and the HEM-CO-Ph-SO₃ (DMSO-D₆: $D_2O = 1:3, 600$ MHz). The sulfite is 4 eq. excessive.

Fig. S9. ¹H-¹³C HSQC spectrum of HEM-CO-Ph (DMSO-D₆, 400MHz).

Fig. S10. $^{1}H^{-13}C$ HSQC spectrum of HEM-CO-Ph-SO₃ (DMSO-D₆: D₂O = 1:3, 400MHz). The sulfite is 4 eq. excessive.

Fig. S 11. HR-Mass spectrum of the HEM-CO-Ph-SO₃. MS (ESI): Found: m/z = 582.1956. (calculated for: 582.1956)

5. Cell Viability and Cellular Imaging

Fig. S 12. Cell viability by a standard CCK-8 assay. HepG-2 cells were incubated with different concentrations of nanoprobe for 12 h.

5.1 Exogenous Imaging of Nanoprobe and Sulfite. In the imaging experiments, the imaging divided into two groups, the first group was that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated

with probe (5 μ M, 30 min), and then imaged; the second group was that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with Na₂SO₃ (250 μ M, 30 min) and nanoprobe (5 μ M, 30 min), and then imaged. (red channel of 570-620 nm)

5.2 Endogenous Imaging of Nanoprobe and Sulfite. The first group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with probe (5 μ M, 30 min), and then imaged; The second group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with GSH (500 μ M, 30 min) and nanoprobe (5 μ M, 30 min), and then imaged. The third group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with Na₂S₂O₃ (250 μ M, 30 min) and nanoprobe (5 μ M, 30 min), subsequently incubated with Na₂S₂O₃ (250 μ M, 30 min) and nanoprobe (5 μ M, 30 min), and then imaged. The fourth group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with GSH/ Na₂S₂O₃ (500 μ M/250 μ M, 30 min) and incubated with probe (5 μ M, 30 min), subsequently incubated with GSH/ Na₂S₂O₃ (500 μ M/250 μ M, 30 min) and incubated with probe (5 μ M, 30 min), subsequently incubated with SNAP (60 min), then incubated GSH/ Na₂S₂O₃ (500 μ M/250 μ M, 30 min) and incubated with probe (5 μ M, 30 min), and then imaged. The sixth group is that cells were pre-treated with NEM (0.5 mM, 30 min) and incubated with SNAP (60 min), then incubated GSH/ Na₂S₂O₃ (500 μ M/250 μ M, 30 min) and incubated with probe (5 μ M, 30 min), and then imaged. The sixth group is that cells were pre-treated with NEM (0.5 mM, 30 min), and then imaged. The sixth group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with SO₃²⁻(250 μ M, 30 min) and nanoprobe (5 μ M, 30 min), and then imaged.

5.3 Subcellular Localization of the Nanoprobe. The first group is that cells were only incubated with probe (5 μ M, 30 min), and then imaged; the second group is that cells were pre-treated with NEM (0.5 mM, 30 min), subsequently incubated with Na₂SO₃ (250 μ M, 30 min) and nanoprobe (5 μ M, 30 min), and subsequently treated with commercially available mitochondrial dye, Mito-Tracker Green and common dye, Hoechst 33342 for a co-localization experiment and then imaged.

Fig. S13. The subcellular co-localization of the nanoprobe (5 μ M) with commercially available mitochondrial dye.

6. Appendix Information

Fig. S15. ¹³C NMR spectrum of HEM-CO-Ph (methanol-D₄, 400 MHz).

Fig. S16. HR-Mass spectrum of HEM-CO-Ph. MS (ESI): m/z = 502.2380.

Fig. S17. ¹H-¹³C HSQC spectrum of HEM-CO-Ph.

Reference:

(1) Mohr, G. J. Chem. Commun. 2002, 2646-2647.

(2) Sun, Y.; Zhong, C.; Gong, R.; Mu, H.; Fu, E. J Org Chem. 2009, 74, 7943-7946.

(3) Choi, M.-G.; Hwang, J.-Y.; Eor, S.-Y.; Chang S.-K. Org Lett. 2010, 12, 5624-5627.

(4) Sun, Y. Q.; Wang, P.; Liu, J.; Zhang, J.; Guo, W. Analyst. 2012, 137, 3430-3433.

(5) Wu, M. Y.; He, T.; Li, K.; Wu, M. B.; Huang, Z.; Yu, X. Q. Analyst. 2013, 138, 3018-3025.

(6) Tian, H.; Qian, J.; Sun, Q.; Bai, H.; Zhang, W. Anal Chim Acta. 2013, 788, 165-170.

(7) Sun, Y. Q.; Liu, J.; Zhang, J.; Yang, T.; Guo, W. Chem Commun. 2013, 49, 2637-2639.

(8) Peng, M. J.; Yang, X. F.; Yin, B.; Guo, Y.; Suzenet, F.; En, D.; Li, J.; Li, C. W.; Duan, Y. W. *Chem Asian J.* 2014, **9**, 1817-1822.

(9) Sun, M.; Yu, H.; Zhang, K.; Zhang, Y.; Yan, Y.; Huang, D.; Wang, S. Anal Chem. 2014, 86, 9381-9385.

(10) Wu, M. Y.; Li, K.; Li, C. Y.; Hou, J. T.; Yu, X. Q. Chem Commun. 2014, 50, 183-185.

- (11) Liu, Z.; Guo, S.; Piao, J.; Zhou, X.; Wu, X. RSC Adv. 2014, 4, 54554-54557.
- (12) Sun, Y.; Zhao, D.; Fan, S.; Duan, L.; Li, R. J Agric Food Chem. 2014, 62, 3405-3409.
- (13) Xu, W.; Teoh, C. L.; Peng, J.; Su, D.; Yuan, L.; Chang, Y. T. Biomaterials. 2015, 56, 1-9.
- (14) Zhu, L.; Xu, J.; Sun, Z.; Fu, B.; Qin, C.; Zeng, L.; Hu, X. Chem Commun. 2015, 51, 1154-1156.
- (15) Liu, Y.; Li, K.; Wu, M. Y.; Liu, Y. H.; Xie, Y. M.; Yu, X. Q. Chem Commun. 2015, **51**, 10236-10239.

(16) Zhu, X.; Zhu, L.; Liu, H. W.; Hu, X.; Peng, R. Z.; Zhang, J.; Zhang, X. B.; Tan, W. Anal Chim Acta. 2016, **937**, 136-142.

(17) Zhang, Y.; Guan, L.; Yu, H.; Yan, Y.; Du, L.; Liu, Y.; Sun, M.; Huang, D.; Wang, S. *Anal Chem*. 2016, **88**, 4426-4431.

- (18) Xu, J.; Pan, J.; Jiang, X.; Qin, C.; Zeng, L.; Zhang, H.; Zhang, J. F. Biosens Bioelectron. 2016, 77, 725-732.
- (19) Yang, X.; Zhou, Y.; Zhang, X.; Yang, S.; Chen, Y.; Guo, J.; Li, X.; Qing, Z.; Yang, R. *Chem Commun.* 2016, **52**, 10289-10292.
- (20) Liu, Y.; Li, K.; Xie, K. X.; Li, L. L.; Yu, K. K.; Wang, X.; Yu, X. Q. Chem Commun. 2016, 52, 3430-3433.

(21) Li, D. P.; Wang, Z. Y.; Cao, X. J.; Cui, J.; Wang, X.; Cui, H. Z.; Miao, J. Y.; Zhao, B. X. *Chem Commun.* 2016, **52**, 2760-2763.

(22) Wang, Q.; Wang, W.; Li, S.; Jiang, J.; Li, D.; Feng, Y.; Sheng, H.; Meng, X.; Zhu, M.; Wang, X. *Dyes Pigm*. 2016, **134**, 297-305.

(23) Li, H.; Yao, Q.; Fan, J.; Hu, C.; Xu, F.; Du, J.; Wang, J.; Peng, X. *Ind. Eng. Chem. Res.* 2016, 55, 1477-1483.
(24) Zhang, H.; Xue, S.; Feng, G. *Sens and Actuators B.* 2016, 231, 752-758.

(25) Chen, S.; Ma, C.; Yuan, M.-S.; Wang, W.; Wang, D.-E.; Chen, S.-W.; Wang, J. *RSC Adv.* 2016, **6**, 85529-85537.

(26) Sun, Y.; Chen, Z.; Chen, F.; Liu, H.; He, H.; Zhang, X.; Wang, S. J Fluoresc. 2017, 27, 1405-1411.

- (27) Yue, Y.; Huo, F.; Ning, P.; Zhang, Y.; Chao, J.; Meng, X.; Yin, C. J Am Chem Soc. 2017, 139, 3181-3185.
- (28) Wang, Y.; Meng, Q.; Zhang, R.; Jia, H.; Wang, C.; Zhang, Z. J. Lumin. 2017, 192, 297-302.

(29) Dou, K.; Chen. G.; Yu, F-B.; Sun, Z-W.; Li, G-L.; Zhao, X-N.; C. L-X.; Y, J-M.; J. Mater. Chem B. 2017, 5, 8389.

(30) Wang, J.; Huang, Y-D.; Tan, H-Q, Tao J.; Qu X.; Hua J-L. J. Photochem. Photobiol., A. 2017, **346**, 265-272.

(31) Wang, Y.; Meng, Q.; Zhang, R.; Jia, H.; Zhang, X.; Zhang, Z. Org Biomol Chem. 2017, **15**, 2734-2739.

(32) Chen, Z.; Chen, F.; Sun, Y.; Liu, H.; He, H.; Zhang, X.; Wang, S. RSC Adv. 2017, 7, 2573-2577.

(33) Gómez, M.; Perez, E. G.; Arancibia, V.; Iribarren, C.; Bravo-Díaz, C.; García-Beltrán, O.; Aliaga, M. E. Sens and Actuators B. 2017, **238**, 578-587.

(34) Li, M.; Feng, W.; Zhang, H.; Feng, G. Sens and Actuators B. 2017, 243, 51-58.

(35) Tang, L.; He, P.; Yan, X.; Sun, J.; Zhong, K.; Hou, S.; Bian, Y. Sens and Actuators B. 2017, 247, 421-427.

(36) Zhang, L.-J.; Wang, Z.-Y.; Liu, J.-T.; Miao, J.-Y.; Zhao, B.-X. Sens and Actuators B. 2017, 253, 19-26.

(37) Zheng, X. L.; Li, H.; Feng, W.; Xia, H. C.; Song, Q. H. ACS Omega. 2018, 3, 11831-11837.

(38) Li, D.-P.; Han, X.-J.; Yan, Z.-Q.; Cui, Y.; Miao, J.-Y.; Zhao, B.-X. *Dyes Pigm.* 2018, **151**, 95-101.

(39) Ye, Z.; Duan, C.; Sheng, R.; Xu, J.; Wang, H.; Zeng, L. Talanta. 2018, 176, 389-396.

(40) Li, H.; Zhou, X.; Fan, J.; Long, S.; Du, J.; Wang, J.; Peng, X. Sens and Actuators B. 2018, 254, 709-718.

(41) Li, J. Z.; Sun, Y. H.; Wang, C. Y.; Guo, Z. Q.; Shen, Y. J.; Zhu, W. H. Anal Chem. 2019, **91**, 11946-11951.

(42) Ma, Y.; Tang, Y.; Zhao, Y.; Lin, W. Anal Chem. 2019, 91, 10723-10730.

(43) Tamima, U.; Santra, M.; Song, C. W.; Reo, Y. J.; Ahn, K. H. Anal Chem. 2019, 91, 10779-10785.

(44) Ma, Y.; Gao, W.; Zhu, L.; Zhao, Y.; Lin, W. Chem Commun. 2019, 55, 11263-11266.

(45) Xueli Yang, Y. Y., Tingting Zhou, Ming Jin, Xuequan Jing, Cai hong Miao; Li, W. Journal. Photochem. Photobiol. A. 2019, **372**, 212-217.

(46) Yin, G.; Gan, Y.; Yu, T.; Niu, T.; Yin, P.; Chen, H.; Zhang, Y.; Li, H.; Yao, S. *Talanta*. 2019, **191**, 428-434.