## SUPPORTING INFORMATION

## FOR

# Exploiting Synergy Between Ligand Design Effects and Counterion Interactions to Boost Room Temperature Phosphorescence from Luminescent Cu(I) Compounds

Rajarshi Mondal,<sup>a</sup> Issiah B. Lozada,<sup>a</sup> Rebecca L. Davis,<sup>a</sup> J. A. Gareth Williams<sup>b\*</sup> and David E. Herbert<sup>a\*</sup>

<sup>a</sup>Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada; \*david.herbert@umanitoba.ca

<sup>b</sup>Department of Chemistry, Durham University, Durham, DH1 3LE, U.K.; \*j.a.g.williams@durham.ac.uk

## TABLE OF CONTENTS

| GENERAL EXPERIMENTAL DETAILS                                                                                                                                                                                                                                           | 5  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Synthesis of 2,6-dimethyl-4-bromophenanthridine                                                                                                                                                                                                                        | 6  |
| Synthesis of (2,6-dimethyl)(4-diphenylphosphino)phenanthridine (L3)                                                                                                                                                                                                    | 7  |
| Synthesis of 1BPh <sub>4</sub>                                                                                                                                                                                                                                         | 8  |
| Synthesis of 1PF <sub>6</sub>                                                                                                                                                                                                                                          | 9  |
| Synthesis of 2BPh <sub>4</sub>                                                                                                                                                                                                                                         | 9  |
| Synthesis of 2PF <sub>6</sub>                                                                                                                                                                                                                                          | 10 |
| Synthesis of ((2,6-dimethyl)(4-diphenylphosphino)phenanthridine) <sub>2</sub> Cu <sub>2</sub> Br <sub>2</sub>                                                                                                                                                          | 11 |
| Synthesis of 3BPh <sub>4</sub>                                                                                                                                                                                                                                         | 12 |
| Synthesis of 3PF <sub>6</sub>                                                                                                                                                                                                                                          | 13 |
| X-RAY CRYSTALLOGRAPHY EXPERIMENTAL DETAILS                                                                                                                                                                                                                             | 13 |
| OPTICAL SPECTROSCOPY MEASUREMENTS                                                                                                                                                                                                                                      | 17 |
| <b>Figure S1.</b> Solid-state X-ray structure of $(L3)_2Cu_2Br_2$ with thermal ellipsoids (where shown at 50% probability levels). Hydrogen atoms and a molecule of the solvent of crystallization (CH <sub>2</sub> Cl <sub>2</sub> ) are omitted for clarity.         | 18 |
| <b>Figure S2.</b> Solid-state X-ray structures of the cationic fragments of $1PF_6$ , $2PF_6$ and $3PF_6$ with thermal ellipsoids (where shown at 50% probability levels). Hydrogen atoms, counterions and lattice-confined solvent molecules are omitted for clarity. | 19 |
| <b>Table S1.</b> Dihedral angles (°) from X-ray structures (1X, 2X and 3X; $X = PF_6$ , BPh <sub>4</sub> ).                                                                                                                                                            | 19 |
| Figure S3. UV-Vis absorption spectra of 1X, 2X and 3X recorded in $CH_2Cl_2$ at room temperature.                                                                                                                                                                      | 20 |
| <b>Figure S4.</b> Absorption spectra of L1, L2, and L3 in $CH_2Cl_2$ at 298 ± 3 K.                                                                                                                                                                                     | 20 |
| <b>Figure S5.</b> Cyclic voltammograms of <b>1-PF</b> <sub>6</sub> , <b>2-PF</b> <sub>6</sub> and <b>3-PF</b> <sub>6</sub> ([analyte] = $1.1 \text{ mM}$ ; $0.1 \text{ M} [n\text{Bu}_4\text{N}][\text{PF}_6]$ , 100 mV/s scan rate).                                  | 21 |
| <b>Table S2.</b> Tabulated potentials vs. $FcH^{0/+}$ of irreversible redox events for <b>1PF</b> <sub>6</sub> , <b>2PF</b> <sub>6</sub> and <b>3PF</b> <sub>6</sub> ([analyte] = 1.1 mM; 0.1 mM [ <i>n</i> Bu <sub>4</sub> N][PF <sub>6</sub> ], 100 mV/s scan rate)  | 21 |
| <b>Figure S6</b> . Optical photographs of <b>1X-3X</b> under UV light ( $\lambda = 365$ nm).                                                                                                                                                                           | 22 |
| <b>Figure S7</b> . Emission spectra of ligands L1, L2, and L3 in EPA at 77 K (EPA = diethyl ether / isopentane / ethanol, 2:2:1 v/v); $\lambda_{ex} = 370$ nm.                                                                                                         | 22 |
| NMR SPECTRA                                                                                                                                                                                                                                                            | 23 |

| Figure S8. <sup>1</sup> H NMR (500 MHz, 22°C, CD <sub>2</sub> Cl <sub>2</sub> ) of 4-bromo-2,6-dimethylphenanthridine.                                         | 23 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure S9. <sup>13</sup> C{ <sup>1</sup> H} (126 MHz, 22°C, CD <sub>2</sub> Cl <sub>2</sub> ) of 4-bromo-2,6-dimethylphenanthridine.                           | 23 |
| Figure S10. <sup>1</sup> H NMR (500 MHz, 22°C, $CD_2Cl_2$ ) spectrum of L3.                                                                                    | 24 |
| Figure S11. ${}^{13}C{}^{1}H{}$ (126 MHz, 22°C, CD <sub>2</sub> Cl <sub>2</sub> ) NMR spectrum of L3.                                                          | 24 |
| Figure S12. <sup>31</sup> P{ <sup>1</sup> H} (202 MHz, 22°C, CD <sub>2</sub> Cl <sub>2</sub> ) NMR spectrum of L3 in CD <sub>2</sub> Cl <sub>2</sub> .         | 25 |
| Figure S13. <sup>1</sup> H NMR (300 MHz, 22°C) spectrum of $1PF_6$ in CDCl <sub>3</sub> .                                                                      | 25 |
| Figure S14. <sup>13</sup> C{ <sup>1</sup> H} NMR (75 MHz, 22°C) spectrum of $1PF_6$ in CDCl <sub>3</sub> .                                                     | 26 |
| Figure S15. <sup>31</sup> P{ <sup>1</sup> H} (121 MHz, 22°C) NMR spectrum of $1PF_6$ in CDCl <sub>3</sub> .                                                    | 26 |
| Figure S16. <sup>19</sup> F NMR (282 MHz, 22°C) spectrum of $1PF_6$ in CDCl <sub>3</sub> .                                                                     | 27 |
| Figure S17. <sup>1</sup> H NMR (500 MHz, 22°C) spectrum of 1BPh <sub>4</sub> in CDCl <sub>3</sub> .                                                            | 27 |
| Figure S18. <sup>13</sup> C{ <sup>1</sup> H} NMR (126 MHz, 22°C) spectrum of $1BPh_4$ in CDCl <sub>3</sub> .                                                   | 28 |
| Figure S19. <sup>31</sup> P{ <sup>1</sup> H} (202 MHz, 22°C) NMR spectrum of $1BPh_4$ in CDCl <sub>3</sub> .                                                   | 28 |
| Figure S20. <sup>1</sup> H NMR (300 MHz, 22°C) spectrum of $2PF_6$ in CDCl <sub>3</sub> .                                                                      | 29 |
| Figure S21. <sup>13</sup> C{ <sup>1</sup> H} NMR (75 MHz, 22°C) spectrum of $2PF_6$ in CDCl <sub>3</sub> .                                                     | 29 |
| Figure S22. <sup>31</sup> P{ <sup>1</sup> H} (121 MHz, 22°C) NMR spectrum of $2PF_6$ in CDCl <sub>3</sub> .                                                    | 30 |
| Figure S23. <sup>19</sup> F NMR (282 MHz, 22°C) spectrum of $2PF_6$ in CDCl <sub>3</sub> .                                                                     | 30 |
| Figure S24. <sup>1</sup> H NMR (500 MHz, 22°C) spectrum of <b>2BPh</b> <sub>4</sub> in CDCl <sub>3</sub> .                                                     | 31 |
| Figure S25. <sup>13</sup> C{ <sup>1</sup> H} NMR (126 MHz, 22°C) spectrum of $2BPh_4$ in CDCl <sub>3</sub> .                                                   | 31 |
| Figure S26. <sup>31</sup> P{ <sup>1</sup> H} (202 MHz, 22°C) NMR spectrum of $2BPh_4$ in CDCl <sub>3</sub> .                                                   | 32 |
| Figure S27. <sup>1</sup> H NMR (300 MHz, 22°C) spectrum of $(L3)_2Cu_2(\mu$ -Br) <sub>2</sub> in CDCl <sub>3</sub> .                                           | 32 |
| Figure S28. <sup>13</sup> C{ <sup>1</sup> H} NMR (75 MHz, 22°C) spectrum of (L3) <sub>2</sub> Cu <sub>2</sub> ( $\mu$ -Br) <sub>2</sub> in CDCl <sub>3</sub> . | 33 |
| <b>Figure S29.</b> <sup>31</sup> P{ <sup>1</sup> H} (121 MHz, 22°C) NMR spectrum of $(L3)_2Cu_2(\mu-Br)_2$ in CDCl <sub>3</sub> .                              | 33 |
| Figure S30. <sup>1</sup> H NMR (500 MHz, 22°C) spectrum of $3PF_6$ in CDCl <sub>3</sub> .                                                                      | 34 |
| Figure S31. <sup>13</sup> C{ <sup>1</sup> H} NMR (126 MHz, 22°C) spectrum of $3PF_6$ in CDCl <sub>3</sub> .                                                    | 34 |
| <b>Figure S32.</b> <sup>31</sup> P{ <sup>1</sup> H} (121 MHz, 22°C) NMR spectrum of $3PF_6$ in CDCl <sub>3</sub> .                                             | 35 |
| Figure S33. <sup>19</sup> F NMR(282 MHz, 22°C) NMR spectrum of $3PF_6$ in CDCl <sub>3</sub> .                                                                  | 35 |

| Figure S34. <sup>1</sup> H NMR (500 MHz, 22°C) spectrum of <b>3BPh</b> <sub>4</sub> in CDCl <sub>3</sub> .                                                                                                                             | 36 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure S35. <sup>13</sup> C{ <sup>1</sup> H} NMR (126 MHz, 22°C) spectrum of <b>3BPh<sub>4</sub></b> in CDCl <sub>3</sub> .                                                                                                            | 36 |
| Figure S36. <sup>31</sup> P{ <sup>1</sup> H} (121 MHz, 22°C) NMR spectrum of <b>3BPh<sub>4</sub></b> in CDCl <sub>3</sub> .                                                                                                            | 37 |
| COMPUTATIONAL DETAILS                                                                                                                                                                                                                  | 38 |
| <b>Figure S37.</b> Alternate view of DFT optimized structures of (a) $S_0$ and (b) $T_1$ states for $1^+$ .                                                                                                                            | 39 |
| <b>Figure S38.</b> Alternate view of DFT optimized structures of (a) $S_0$ and (b) $T_1$ states for $2^+$ .                                                                                                                            | 39 |
| <b>Figure S39.</b> Alternate view of DFT optimized structures of (a) $S_0$ and (b) $T_1$ states for $3^+$ .                                                                                                                            | 40 |
| <b>Table S3.</b> Selected bond distances [Å] and angles [°] for the DFT-optimized $S_0$ and $T_1$ state structures of $1^+$ , $2^+$ , and $3^+$ .                                                                                      | 41 |
| <b>Table S4.</b> Geometric indices $(\tau_{\delta})^{18}$ of 1X, 2X, and 3X (X = PF <sub>6</sub> or BPh <sub>4</sub> ) crystal structures, and DFT optimized S <sub>0</sub> and T <sub>1</sub> structures of $1^+$ , $2^+$ and $3^+$ . | 42 |
| <b>Table S5.</b> Calculated photophysical parameters for $1^+$ , $2^+$ and $3^+$ complexes.                                                                                                                                            | 42 |
| <b>Table S6.</b> First four TD-DFT calculated electronic transitions for $1^+$ , $2^+$ and $3^+$ with the corresponding oscillators strengths and MO characters (>10% contribution).                                                   | 43 |
| <b>Figure S40.</b> TD-DFT orbital energies, HOMO-LUMO gap ( $\Delta E_{H-L}$ ), and frontier molecular orbital (MO; isosurface value = 0.05) diagrams of $1^+$ , $2^+$ , and $3^+$ .                                                   | 44 |
| <b>Figure S41.</b> Electron-hole density maps (green = electron, blue = hole; isosurface value = 0.002) for the $S_1 \leftarrow S_0$ transition of $1^+$ , $2^+$ and $3^+$ .                                                           | 44 |
| <b>Table S7.</b> Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of $1^+$ . Fragment contributions >10% are in bold.                                                                              | 45 |
| <b>Table S8.</b> Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of $2^+$ . Fragment contributions >10% are in bold.                                                                              | 46 |
| <b>Table S9.</b> Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of $3^+$ . Fragment contributions >10% are in bold.                                                                              | 47 |
| Energies and Reaction Coordinates                                                                                                                                                                                                      | 47 |
| $1^{+}(S_{0})$                                                                                                                                                                                                                         | 47 |
| $1^{+}(T_{1})$                                                                                                                                                                                                                         | 49 |
| $2^{+}(S_{0})$                                                                                                                                                                                                                         | 51 |
| $2^{+}(T_{1})$                                                                                                                                                                                                                         | 53 |
| $3^+(S_0)$                                                                                                                                                                                                                             | 55 |

#### REFERENCES

## **GENERAL EXPERIMENTAL DETAILS**

Unless otherwise stated, all air sensitive experiments were carried out inside an inertatmosphere glove box  $(N_2)$  or using standard Schlenk techniques (Ar). 2,6-Dibromoaniline (AK Scientific), N-iodosuccinimide (AK Scientific), p-toluidine (Alfa Aesar), N-bromosuccinimide (Alpha Aesar), 2-formylphenyl boronic acid (Combi Blocks), 2-acetylphenyl boronic acid (Combi blocks), Pd(PPh<sub>3</sub>)<sub>4</sub> (Alfa Aesar), Na<sub>2</sub>CO<sub>3</sub> (Alfa Aesar), chlorodiphenylphosphine (VWR), CuBr (Aldrich), sodium hexafluorophosphate (Alfa Aesar) and sodium tetraphenylborate (Aldrich) were purchased from commercial suppliers and used as received. 2-Bromo-4-methylaniline,<sup>1</sup>6bromo-2-iodo-4-methylaniline,<sup>2</sup> 4-bromo-2-methylphenanthridine,<sup>2</sup> 8-bromo-6methylquinoline,<sup>1</sup> (4-diphenylphosphino)phenanthridine<sup>3</sup> (L1) and (4diphenylphosphino)-2-methylphenanthridine<sup>4</sup> (L2) were synthesized following published procedures. Organic solvents were dried over appropriate reagents and deoxygenated prior to use, with the exception of 1,2-dimethoxyethane (1,2-DME) and water, which were simply degassed. NMR spectra were recorded on a Bruker Avance 300 MHz or Bruker Avance-III 500 MHz spectrometer as noted. Electronic absorption spectra (750-190 nm) were recorded on a Thermo Scientific Helios Zeta UV-VIS spectrophotometer at room temperature and concentrations on the order of  $1.0 \times 10^{-4}$  mol L<sup>-1</sup>. Elemental analyses were performed by Canadian Microanalytical Service Ltd., Delta, BC and at the University of Manitoba on a Perkin Elmer EA2400 CHN Analyzer.

60

#### Synthesis of 2,6-dimethyl-4-bromophenanthridine



2-Bromo-6-iodo-p-toluidine (1.78 g, 5.70 mmol), 2-acetylphenylboronic acid (0.98 g, 6.00 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (0.20 g, 0.17 mmol) were combined in a thick-walled, 500 mL Teflon-stoppered flask under N<sub>2</sub> atmosphere, followed by addition of degassed 1,2-DME (100 mL) and a solution of Na<sub>2</sub>CO<sub>3</sub> (1.8 g, 17.10 mmol) in 40 mL of degassed water. The flask was then sealed and vigorously stirred overnight in an oil bath (130 °C). The flask was allowed to cool to room temperature and the mixture pumped dry. The crude was extracted with CH<sub>2</sub>Cl<sub>2</sub> and excess MgCl<sub>2</sub> (0.5 g) was added and stirred overnight. The mixture was filtered through celite, concentrated nearly to dryness and passed through a plug of neutral Al<sub>2</sub>O<sub>3</sub>. Drying *in vacuo* gave a pale yellow solid. Isolated yield = 1.42 g (87%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz, 22 °C):  $\delta$  8.52 (d,  $J_{\text{HH}}$  = 5 Hz, 1H, C<sub>7</sub>-H), 8.23 (s, 1H, C<sub>3</sub>-H), 8.17 (d,  $J_{\text{HH}} = 5$  Hz, 1H, C<sub>10</sub>-H), 7.83 (br, 1H, C<sub>1</sub>-H), 7.82-7.79 (overlapped m, 1H, C<sub>9</sub>-H), 7.70-7.67 (overlapped m, 1H, C<sub>8</sub>-H), 3.01 (s, 3H, <sup>phen</sup>C<sup>6</sup><sub>Me</sub>-H), 2.55 ppm (s, 3H, <sup>phen</sup>C<sup>2</sup><sub>Me</sub>-H). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 126 MHz, 22 °C): δ 159.4 (C<sub>6</sub>=N), 139.4 (C<sub>4a</sub>), 137.3 (C<sub>3</sub>), 134.2 (C<sub>1</sub>-H), 132.4 (C<sub>10a</sub>), 131.0 (C<sub>9</sub>-H), 128.2 (C<sub>8</sub>-H), 127.0 (C<sub>10</sub>-H), 126.4 (C<sub>6a</sub>), 125.5 (C<sub>4</sub>-Br), 125.2 (C<sub>10b</sub>), 122.9 (C<sub>7</sub>-H), 122.0 (C<sub>3</sub>-H), 23.8 (s, <sup>phen</sup>C<sup>6</sup><sub>Me</sub>-H), 21.8 ppm (s, <sup>phen</sup> $C^2_{Me}$ -H).

#### Synthesis of (2,6-dimethyl)(4-diphenylphosphino)phenanthridine (L3)

2,6-Dimethyl-4-bromophenanthridine (0.268 g, 1.00 mmol) was dissolved in dry diethylether (5 mL) and cooled to -78 °C. A solution of sec-butyllithium in cyclohexane (1.6 M; 0.80 mL, 1.00 mmol) was added drop-wise over a period of 10 min. The reaction mixture was stirred for 6 h at -78 °C. A solution of chlorodiphenylphosphine (0.220 g, 1.00 mmol) in dry diethylether (6 mL) was added drop-wise to the reaction mixture and the mixture allowed to warm to room temperature overnight, at which point an off-white suspension was observed. The volatiles were removed under reduced pressure and the solid residue was dissolved in dichloromethane (10 mL) and filtered through a small plug of celite. The filtrate was concentrated to ~2 mL under vacuum and 3 mL of pentane added. A precipitate formed overnight upon standing at  $-35^{\circ}$  C. Isolated yield = 0.241 g (61%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz, 22 °C):  $\delta$  8.63 (d,  $J_{\text{HH}}$  = 10 Hz, 1H, <sup>phen</sup>C<sub>Ar</sub>-H), 8.35 (s, 1H,  $^{\text{phen}}C_{\text{Ar}}$ -H), 8.16 (d, 1H,  $J_{\text{HH}}$  = 5, 10 Hz,  $^{\text{phen}}C_{\text{Ar}}$ -H), 7.83 (t, 1H,  $J_{\text{HH}}$  = 5, 10 Hz,  $^{\text{phen}}C_{\text{Ar}}-H$ ), 7.68 (t, 1H,  $J_{\text{HH}}$  =5, 10 Hz,  $^{\text{phen}}C_{\text{Ar}}-H$ ), 7.37-7.32 (overlapped m, 10H, P $C_{\text{Ar}}-H$ ) *H*), 6.98 (br, 1H,  ${}^{\text{phen}}C_{\text{Ar}}$ -*H*), 2.83 (s, 3H,  ${}^{\text{phen}}C_{\text{Me}}^{6}$ -*H*), 2.46 ppm (s, 3H,  ${}^{\text{phen}}C_{\text{Me}}^{2}$ -*H*). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 126 MHz, 22 °C):  $\delta$  157.3 (<sup>phen</sup>C<sub>Ar</sub>-H), 143.8 (d, J<sub>CP</sub> = 12 Hz, <sup>phen</sup> $C_{Ar}$ ), 139.1 (d,  $J_{CP} = 12$  Hz,  $PC_{Ar}$ ), 138.6 (d,  $J_{CP} = 11$  Hz,  $PC_{Ar}$ ), 136.5 (<sup>phen</sup> $C_{Ar}^{2}$ Me), 134.9 (<sup>phen</sup> $C_{Ar}$ ), 134.7 (d,  $J_{CP} = 20$  Hz,  $PC_{12}-H$ ), 132.8 (br,  $J_{CP} = 2$  Hz, <sup>phen</sup> $C_{Ar}$ ), 130.7  $(^{\text{phen}}C_{\text{Ar}}-H)$ , 128.8  $(^{\text{phen}}C_{\text{Ar}}-H)$ , 128.7 (d,  $J_{\text{CP}} = 12$  Hz,  $PC_{\text{Ar}}$ ), 127.8  $(PC_{\text{Ar}})$ , 127.0  $(^{\text{phen}}C_{\text{Ar}}-H)$ *H*), 126.4 (br, PC<sub>Ar</sub>), 123.6 (br,  $J_{CP} = 2$  Hz, <sup>phen</sup>C<sub>Ar</sub>) 123.0 (<sup>phen</sup>C<sub>Ar</sub>-*H*), 23.36 (C<sup>6</sup><sub>Me</sub>), 22.32 ppm  $(C^{2}_{Me})$ . <sup>31</sup>P{<sup>1</sup>H} NMR  $(CD_{2}Cl_{2}, 202 \text{ MHz}, 22 \text{ °C})$ :  $\delta$  -12.97 ppm (s).

### Synthesis of 1BPh<sub>4</sub>

A solution of (4-diphenylphosphino)phenanthridine (0.023 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was added drop-wise to a suspension of CuBr (0.009 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) with constant stirring. The reaction mixture was stirred overnight at room temperature. An orange suspension formed, which was filtered through celite and dropwise added to a solution of one more equivalent of (4-diphenylphosphino)phenanthridine (0.023 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). After one hour, a solution of sodium tetraphenylborate (0.021 g, 0.063 mmol) in THF (3 mL) was added. The color changed to yellowish green. Stirring was continued overnight and the reaction mixture then filtered through small plug of celite and dried under vacuum to give a greenish solid, which was washed with Et<sub>2</sub>O (50 mL) and dried in vacuum to give an off-white product. X-ray quality single crystals were grown by slow diffusion of hexane into a DCM solution of the product. Yield = 0.044 g (64%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 22 °C):  $\delta$  8.77 (m, J<sub>HH</sub> = 10 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.61 (m,  $J_{HH}$  = 10 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.31 (s, 2H, <sup>phen</sup> $C_{Ar}$ -H), 7.95-7.89 (m, 4H, <sup>phen</sup> $C_{Ar}$ -H), 7.84 (m,  $J_{HH}$  = 10, 5 Hz, 4H, <sup>phen</sup> $C_{Ar}$ -H), 7.62 (m,  $J_{HH}$  = 10, 5 Hz, 2H, PC<sub>Ar</sub>-H), 7.46-7.36 ppm (overlapped m, 21H, PC<sub>Ar</sub>-H), 7.33-7.30 (overlapped m, 8H, PC<sub>Ar</sub>-H, PC<sub>BPh4</sub>-H), 6.96-6.39 (br, 8H, PC<sub>BPh4</sub>-H), 6.80-6.77 ppm (br, 4H, PC<sub>BPh4</sub>-*H*). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 126 MHz, 22 °C):  $\delta$  164.4 (q,  $J_{CB} = 49$  Hz, <sup>phen</sup>C<sub>Ar</sub>), 156.5  $(^{\text{phen}}C_{\text{Ar}})$ , 145.5 (br,  $^{\text{phen}}C_{\text{Ar}}H$ ), 136.4 (br,  $PC_{\text{Ar}}H$ ), 136.3 (s,  $^{\text{phen}}C_{\text{Ar}}$ ), 133.8 ( $^{\text{phen}}C_{\text{Ar}}H$ ), 133.2 (v br,  $J_{CP} = 31$  Hz,  $PC_{Ar}$ ), 132.7 (s,  $PC_{Ar}$ -H), 130.7 (t, <sup>phen</sup> $C_{Ar}$ -H), 129.6 ( $PC_{Ar}$ -H), 129.4 (br,  ${}^{\text{phen}}C_{\text{Ar}}$ -H), 129.3 ( ${}^{\text{phen}}C_{\text{Ar}}$ -H), 128.9 ( ${}^{\text{phen}}C_{\text{Ar}}$ ), 126.4 ( ${}^{\text{phen}}C_{\text{Ar}}$ -H), 126.2 ( ${}^{\text{phen}}C_{\text{Ar}}$ ), 125.7 (br,  $^{\text{phen}}C_{\text{Ar}}$ ), 125.5 (br,  $J_{\text{CB}} = 4$ ,  $PC_{\text{BPh4}}$ ), 122.5( $^{\text{phen}}C_{\text{Ar}}H$ ), 121.5 ppm ( $^{\text{phen}}C_{\text{Ar}}H$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C): δ -13.3 ppm (br, s). Anal. Calc. for C<sub>74</sub>H<sub>56</sub>N<sub>2</sub>P<sub>2</sub>BCu: C, 80.10; H, 5.09 %. Found: C, 80.26, H, 5.35 %.

### Synthesis of 1PF<sub>6</sub>

similar  $1PF_6$ was prepared by а procedure to 1BPh<sub>4</sub> using (4diphenylphosphino)phenanthridine (0.023 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) and CuBr (0.009 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) and followed by addition of one more equivalent (4-diphenylphosphino)phenanthridine (0.023 g, 0.063 mmol) and sodium hexafluorophosphate (0.021 g, 0.063 mmol) in THF (3 mL); solid off white product. Xray quality single crystals were grown by slow diffusion of Et<sub>2</sub>O in DCM solution of the product. Yield = 0.046 g (78%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, 22 °C):  $\delta$  8.93 (br m, J = 5 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.75 (m, J = 5 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.36 (v br, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.04-8.01 (br, 2H, <sup>phen</sup> $C_{Ar}$ -H), 7.97-7.93 (overlapped m, 4H, <sup>phen</sup> $C_{Ar}$ -H), 7.74-7.71 (m, 2H,  $PC_{Ar}-H$ , 7.53-7.33 ppm (overlapped m, 22H,  $PC_{Ar}-H$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 75 MHz, 22 °C):  $\delta$  156.5 (<sup>phen</sup>C<sub>Ar</sub>H), 145.6 (br,  $J_{CP} = 16$  Hz, <sup>phen</sup>C<sub>Ar</sub>), 136.3 (<sup>phen</sup>C<sub>Ar</sub>H), 133.8 (s,  $PC_{Ar}H$ , 133.2 (v br, <sup>phen</sup> $C_{Ar}$ ), 133.0 (br,  $PC_{Ar}$ ), 132.8 (<sup>phen</sup> $C_{Ar}H$ ), 131.1 (v br,  $PC_{Ar}$ ), 130.6 (PC<sub>Ar</sub>H), 129.7 (<sup>phen</sup>C<sub>Ar</sub>H), 129.4 (br, PC<sub>Ar</sub>H), 129.3 (<sup>phen</sup>C<sub>Ar</sub>H), 128.8 (<sup>phen</sup>C<sub>Ar</sub>), 126.4 (<sup>phen</sup> $C_{Ar}$ ), 126.3 (<sup>phen</sup> $C_{Ar}$ H), 125.8 (<sup>phen</sup> $C_{Ar}$ ), 122.5 ppm (<sup>phen</sup> $C_{Ar}$ H). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C): δ -13.1 (br, s), 144.3 (sep) ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>, 121 MHz, 25 °C): -73.89 ppm (d,  $J_{PF}$  = 755 Hz). Anal. Calc'd for:  $C_{50}H_{36}N_2P_3F_6Cu$ •0.5CH<sub>2</sub>Cl<sub>2</sub>: C, 62.14, H, 3.99 %. Found: C, 60.20; H, 4.00 %.

### Synthesis of 2BPh<sub>4</sub>

Following the similar procedure of  $1BPh_4$ , (2-methyl,4diphenylphosphino)phenanthridine (0.024 g, 0.063 mmol) was added drop-wise to CuBr (0.009 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL). Then one more equivalent (2-methyl,4diphenylphosphino)phenanthridine (0.024 g, 0.063 mmol) was added before sodium tetraphenylborate (0.021 g, 0.063 mmol) in THF (3 mL) was added to give an orange solid. X-ray quality single crystals were grown by slow diffusion of Et<sub>2</sub>O into a DCM solution of the product. Yield = 0.065 g (91%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 22 °C): δ 8.60 (br, 4H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 8.25 (s, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 7.91 (m,  $J_{HH}$  = 15, 10 Hz, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 7.70 (br,  $J_{HH}$  = 10 Hz, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 7.61 (m,  $J_{HH}$  = 10, 15 Hz, 4H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 7.46-7.32 (overlapped m, 30H, PC<sub>Ar</sub>-*H*, PC<sub>BPh4</sub>-*H*), 6.96 (overlapped m, 8H, PC<sub>BPh4</sub>-*H*), 6.79 (overlapped m, 4H, PC<sub>BPh4</sub>-*H*), 2.65 ppm (s, 3H, <sup>phen</sup>C<sub>Me</sub>-*H*). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 126 MHz, 22 °C): δ 164.4 (q,  $J_{CB}$  = 49 Hz, PC<sub>BPh4</sub>), 155.5 (br, <sup>phen</sup>C<sub>Ar</sub>-*H*), 144.0 (t,  $J_{CP}$  = 10, 11 Hz, <sup>phen</sup>C<sub>Ar</sub>), 139.2 (s, PC<sub>Ar</sub>), 137.5 (s, <sup>phen</sup>C<sub>Ar</sub>-*H*), 133.5 (<sup>phen</sup>C<sub>Ar</sub>-*H*), 133.2 (v br, PC<sub>Ar</sub>), 132.9 (t,  $J_{CP}$  = 16, 17 Hz, PC<sub>Ar</sub>), 132.4 (<sup>phen</sup>C<sub>Ar</sub>), 131.1 (v br, PC<sub>Ar</sub>), 130.6 (PC<sub>Ar</sub>-*H*), 129.5 (PC<sub>Ar</sub>-*H*), 129.5 (br,  $J_{CB}$  = 3 Hz, PC<sub>BPh4</sub>-*H*), 122.4 (s, <sup>phen</sup>C<sub>Ar</sub>), 121.5 (s, PC<sub>BPh4</sub>-*H*), 22.15 ppm (<sup>phen</sup>C<sub>Ar</sub>-*H*). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 202 MHz, 22 °C): δ -13.1 ppm (br, s). Anal. Calc'd for: C<sub>78</sub>H<sub>60</sub>BCuN<sub>2</sub>P<sub>2</sub>: C, 80.24; H, 5.32 %. Found: C: 80.41, H: 5.32 %.

#### Synthesis of 2PF<sub>6</sub>

Complex **2PF**<sub>6</sub> was synthesized in a similar way to **1BPh**<sub>4</sub> using **L2** (0.024 g, 0.063 mmol) and CuBr (0.089 g, 0.063 mmol). Then one more equivalent (2-methyl,4-diphenylphosphino)phenanthridine (0.024 g, 0.063 mmol) was added to the reaction mixture, before adding a solution of sodium hexafluorophosphate (0.021 g, 0.063 mmol) in THF (3 mL); solid yellowish-green product. X-ray quality single crystals were grown by slow diffusion of hexane into a DCM solution of the product. Yield = 0.49 g (80%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, 22 °C):  $\delta$  8.71 (m, *J* = 5 Hz, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 8.68 (br, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 8.27 (br, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 8.00 (m, 2H, <sup>phen</sup>C<sub>Ar</sub>-*H*), 7.72-7.69 (overlapped m,

4H, <sup>phen</sup> $C_{Ar}$ -*H*), 7.51-7.34 (overlapped m, 22H, <sup>phen</sup> $C_{Ar}$ -*H*, P $C_{Ar}$ -*H*), 2.68 ppm (s, 6H, <sup>phen</sup> $C_{Me}$ -H). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 75 MHz, 22 °C):  $\delta$  155.6 (<sup>phen</sup> $C_{Ar}$ -*H*), 144.0 (br,  $J_{CP} =$ 9,11 Hz, <sup>phen</sup> $C_{Ar}$ ), 139.2 (<sup>phen</sup> $C_{Ar}$ -*H*), 137.4 (P $C_{Ar}$ -*H*), 133.5 (<sup>phen</sup> $C_{Ar}$ ), 133.2 (v br, <sup>phen</sup> $C_{Ar}$ -*H*), 132.8 (P $C_{Ar}$ ), 132.5 (P $C_{Ar}$ ), 131.1 (v br, P $C_{Ar}$ ), 130.6 (P $C_{Ar}$ -*H*), 129.7 (<sup>phen</sup> $C_{Ar}$ ), 129.4 (br, P $C_{Ar}$ -*H*), 129.1 (<sup>phen</sup> $C_{Ar}$ -*H*), 126.4 (<sup>phen</sup> $C_{Ar}$ ), 126.1 (<sup>phen</sup> $C_{Ar}$ ), 125.6 (<sup>phen</sup> $C_{Ar}$ ), 122.4 (<sup>phen</sup> $C_{Ar}$ -*H*), 22.14 ppm (<sup>phen</sup> $C_{Me}$ -*H*). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C):  $\delta$  -13.06 (br, s), 144.3 ppm (sep). <sup>19</sup>F NMR (CDCl<sub>3</sub>, 282 MHz, 22 °C): -73.9 ppm (d,  $J_{PF} =$  755 Hz). Anal. Calc'd for: C<sub>52</sub>H<sub>40</sub>N<sub>2</sub>P<sub>3</sub>F<sub>6</sub>Cu: C, 60.73, H, 4.04 %. Found: C, 60.16; H, 4.14 %.

### Synthesis of ((2,6-dimethyl)(4-diphenylphosphino)phenanthridine)<sub>2</sub>Cu<sub>2</sub>Br<sub>2</sub>

This complex was synthesized via a procedure analogous to that described previously.<sup>4</sup> L3 (0.024 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was drop-wise added to a stirring suspension of CuBr (0.009 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL). The reaction mixture was stirred overnight at room temperature, giving a yellow suspension, which was filtered through a small plug of Celite and recrystallized following slow diffusion of hexane into a dichloromethane solution. Orange-yellow crystals. Yield = 0.026 g (81%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, 22 °C):  $\delta$  8.71 (br,  $J_{\text{HH}} = 15$  Hz, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 8.58 (s, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 8.07 (br, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 7.97 (m,  $J_{\text{HH}} = 10$ , 15 Hz, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 7.74 (m,  $J_{\text{HH}} = 10$ , 15 Hz, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 7.50 (s, 1H, <sup>phen</sup> $C_{\text{Ar}}$ -H), 7.37 – 7.28 (overlapped m, 5H, P $C_{\text{Ar}}$ -H), 7.23 – 7.18 (overlapped m, 5H, P $C_{\text{Ar}}$ -H), 2.59 ppm (s, 6H, <sup>phen</sup> $C_{\text{Me}}$ -H, <sup>phen</sup> $C_{\text{Me}}$ -H), <sup>13</sup>C {<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 126 MHz, 22 °C):  $\delta$  162.1 (s, <sup>phen</sup> $C_{\text{Ar}}$ -H), 143.6 (s, <sup>phen</sup> $C_{\text{Ar}}$ ), 137.7 (br, <sup>phen</sup> $C_{\text{Ar}}$ -H), 133.2 (<sup>phen</sup> $C_{\text{Ar}}$ ), 132.5 (d, P $C_{\text{Ar}}$ -H), 125.7 (br, <sup>phen</sup> $C_{\text{Ar}}$ ), 125.2 (d, <sup>phen</sup> $C_{\text{Ar}}$ , 28.9 (<sup>phen</sup> $C_{\text{Ar}}$ -H), 127.8 (<sup>phen</sup> $C_{\text{Ar}}$ -H), 126.4 (<sup>phen</sup> $C_{\text{Ar}}$ ), 125.7 (br, <sup>phen</sup> $C_{\text{Ar}}$ ), 125.2 (d, <sup>phen</sup> $C_{\text{Ar}}$ ), 122.8 (<sup>phen</sup> $C_{Ar}$ -H), 25.7 ( $C^{2}_{Me}$ ), 21.9 ppm ( $C^{6}_{Me}$ ). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C):  $\delta$  -28.6 ppm (br, s).

#### Synthesis of 3BPh<sub>4</sub>

L3 (0.025 g, 0.063 mmol) and CuBr (0.009 g, 0.063 mmol) were first combined in THF (3 mL) to give a yellow suspension. A second equivalent of L3 (0.025 g, 0.063 mmol) and sodium tetraphenylborate (0.011 g, 0.063 mmol) in THF (3 mL) were then added. The resulting yellow-green solution was filtered through Celite and dried, and X-ray quality single crystals were grown by slow diffusion of hexane into a CH<sub>2</sub>Cl<sub>2</sub> solution of the product. Yield = 0.041 (56%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz, 22 °C):  $\delta$  8.77 (m, J<sub>HH</sub>= 15 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.71 (s, 2H, <sup>phen</sup> $C_{Ar}$ -H), 8.02 (m,  $J_{HH}$  = 15, 10 Hz, 2H, <sup>phen</sup> $C_{Ar}$ -H), 7.97 (br,  $J_{\rm HH}$ = 10 Hz, 2H, <sup>phen</sup> $C_{\rm Ar}$ -H), 7.75 (m,  $J_{\rm HH}$ = 10, 15 Hz, 4H, <sup>phen</sup> $C_{\rm Ar}$ -H), 7.65 (v br, 2H, PC<sub>Ar</sub>-H), 7.39-7.37 (overlapped m, 4H, <sup>phen</sup>C<sub>Ar</sub>-H, PC<sub>Ar</sub>-H), 7.33 (overlapped m, 8H, PCAr-H), 7.23-7.16 (overlapped m, 16H, PCAr-H, PCBPh4-H), 7.02-7.00 (overlapped m, 8H, PC<sub>BPh4</sub>-H), 6.87-6.84 (overlapped m, 4H, PC<sub>BPh4</sub>-H), 2.64 (s, 3H, <sup>phen</sup>C<sup>6</sup><sub>Me</sub>-H), 2.43 ppm (s, 3H, <sup>phen</sup> $C^2_{Me}$ -H). <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 126 MHz, 22 °C):  $\delta$  164.6 (q, J<sub>CB</sub> = 49 Hz, PC<sub>BPh4</sub>), 162.8 (br, <sup>phen</sup>C<sub>Ar</sub>), 144.2 (t,  $J_{CP} = 8,10$  Hz, <sup>phen</sup>C<sub>Ar</sub>), 138.9 (PC<sub>Ar</sub>-H), 138.6  $(^{\text{phen}}C_{\text{Ar}}H)$ , 136.4  $(^{\text{phen}}C_{\text{Ar}}H)$ , 133.3 (br, PC<sub>Ar</sub>H), 132.8 (PC<sub>Ar</sub>), 132.6 (t,  $J_{\text{CP}} = 16,16$  Hz,  $^{\text{phen}}C_{\text{Ar}}$ , 132.2 (br, PC<sub>Ar</sub>), 130.6 ( $^{\text{phen}}C_{\text{Ar}}H$ ), 129.4 (br,  $^{\text{phen}}C_{\text{Ar}}H$ ), 129.2 (PC<sub>Ar</sub>), 128.8  $(^{\text{phen}}C_{\text{Ar}})$ , 128.1  $(^{\text{phen}}C_{\text{Ar}}H)$ , 126.7  $(^{\text{phen}}C_{\text{Ar}})$ , 126.4  $(^{\text{phen}}C_{\text{Ar}}H)$ , 126.1 (br,  $J_{\text{CB}} = 3$  Hz, PC<sub>BPh4</sub>-H), 125.9 (br, <sup>phen</sup>C<sub>Ar</sub>), 123.2 (<sup>phen</sup>C<sub>Ar</sub>), 122.2 (<sup>phen</sup>C<sub>Ar</sub>-H), 26.10 (<sup>phen</sup>C<sup>2</sup><sub>Me</sub>-H), 22.04 ppm (<sup>phen</sup> $C^{6}_{Me}$ -H). <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C):  $\delta$  -17.7 ppm (br, s). Anal. Calc'd for: C<sub>78</sub>H<sub>64</sub>BCuN<sub>2</sub>P<sub>2</sub>. CH<sub>2</sub>Cl<sub>2</sub>: C, 75.87; H, 5.32 %. Found: C, 75.57; H, 5.43 %.

### Synthesis of 3PF<sub>6</sub>

This complex was prepared by a similar procedure using L3 (0.025 g, 0.063 mmol) and CuBr (0.089 g, 0.063 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 mL). A yellow suspension formed. Addition of one more equivalent of L3 (0.025 g, 0.063 mmol) and sodium hexafluorophosphate (0.021 g, 0.063 mmol) in THF (3 mL) gave the product; yellow solid. X-ray quality single crystals were grown by slow diffusion of diethylether into a CH<sub>2</sub>Cl<sub>2</sub> solution. Yield = 0.041 g (66%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 22 °C):  $\delta$  8.78 (d, J = 10 Hz, <sup>phen</sup>C<sub>Ar</sub>-H), 8.69 (br, 1H, <sup>phen</sup> $C_{Ar}$ -H), 8.03 (m, J = 5, 10 Hz, 1H, <sup>phen</sup> $C_{Ar}$ -H), 7.98 (d, J = 5 Hz, 2H,  $^{\text{phen}}C_{\text{Ar}}-H$ , 7.77 (t, J = 10, 15 Hz, 2H,  $^{\text{phen}}C_{\text{Ar}}-H$ ), 7.54 (v br, 2H, P $C_{\text{Ar}}-H$ ), 7.39-7.36 (overlapped m, 4H,  $PC_{Ar}$ -H), 7.16 (overlapped m, 16H,  $PC_{Ar}$ -H), 2.63 (s, 3H, <sup>phen</sup> $C^{2}_{Me}$ -H), 2.40 ppm (s, 3H, <sup>phen</sup> $C^{6}_{Me}$ -H). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 126 MHz, 22 °C):  $\delta$  162.5 (<sup>phen</sup> $C_{Ar}$ -*H*), 143.7 (t,  $J_{CP} = 16$  Hz,  ${}^{phen}C_{Ar}$ ), 138.4 ( ${}^{phen}C_{Ar}$ .*H*), 138.1 (br,  $J_{CP} = 15$  Hz,  $PC_{Ar}$ H), 133.1 (<sup>phen</sup> $C_{Ar}$ ), 132.8 (v br, <sup>phen</sup> $C_{Ar}H$ ), 132.4 (br, P $C_{Ar}$ ), 132.0 (t,  $J_{CP} = 31$  Hz, P $C_{Ar}H$ ), 130.5 (<sup>phen</sup> $C_{Ar}$ .H), 129.9 (br, P $C_{Ar}$ ), 129.2 (P $C_{Ar}$ -H), 129.0 (br, <sup>phen</sup> $C_{Ar}$ ), 127.8 (<sup>phen</sup> $C_{Ar}$ -H), 126.2 (<sup>phen</sup> $C_{Ar}$ ), 125.5 (br, <sup>phen</sup> $C_{Ar}$ .H), 122.9 (<sup>phen</sup> $C_{Ar}$ ), 25.70 (<sup>phen</sup> $C_{Me}^{2}$ ), 21.93 ppm  $\binom{\text{phen}}{C_{Me}^6}$ . <sup>31</sup>P{<sup>1</sup>H} NMR (CDCl<sub>3</sub>, 121 MHz, 22 °C):  $\delta$  -17.7 (br, s), -144.3 ppm (sep,  $J_{PF}$ = 755 Hz). <sup>19</sup>F NMR (CDCl<sub>3</sub>, 500 MHz, 22 °C): -73.9 ppm (d,  $J_{PF}$  = 755 Hz). Anal. Calc'd for C<sub>54</sub>H<sub>44</sub>CuF<sub>6</sub>N<sub>2</sub>P<sub>3</sub>•CH<sub>2</sub>Cl<sub>2</sub>: C, 61.37; H, 4.34 %. Found: C, 61.61; H, 4.46 %.

### X-RAY CRYSTALLOGRAPHY EXPERIMENTAL DETAILS

X-ray crystal structure data was collected from multi-faceted crystals of suitable size and quality selected from a representative sample of crystals of the same habit using an optical microscope. In each case, crystals were mounted on MiTiGen loops with data collection carried out in a cold stream of nitrogen (150 K; Bruker D8 QUEST ECO). All diffractometer manipulations were carried out using Bruker APEX3 software.<sup>5</sup> Structure solution and refinement was carried out using XS, XT and XL software, embedded within the Bruker SHELXTL suite.<sup>6</sup> For each structure, the absence of additional symmetry was confirmed using ADDSYM incorporated in the PLATON program.<sup>7</sup> CCDC 1872863-1872869 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Crystal structure data for **1PF**<sub>6</sub>: X-ray quality crystals were grown following diffusion of diethylether vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters:  $C_{51}H_{38}Cl_2$  CuF<sub>6</sub>N<sub>2</sub>P<sub>3</sub> 1020.18 g/mol, triclinic, space group *P*-1; *a* = 9.1636(17) Å, *b* = 10.448(2) Å, *c* = 12.101(2) Å, *a* = 96.098(14)°, *β* = 99.601(13)°, *γ* = 109.077(17)°, V = 1063.4(4) Å<sup>3</sup>; *Z* = 1,  $\rho_{calcd}$  = 1.488 g cm<sup>-3</sup>; crystal dimensions 0.310 x 0.270 x 0.100 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>*a*</sub> radiation, 150(2) K,  $\theta_{max}$  = 34.463°; 78831 reflections, 8169 independent (R<sub>int</sub> = 0.0288), direct methods; absorption coeff ( $\mu$  = 1.241 mm<sup>-1</sup>), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>0</sub><sup>2</sup>) with SHELXTL V6.1, 272 parameters, 0 restraints, *R*<sub>1</sub> = 0.0297 (*I* > 2 $\sigma$ ) and *wR*<sub>2</sub> = 0.0759 (all data), Goof = 1.024, residual electron density 0.592/-0.404 e Å<sup>-3</sup>.

Crystal structure data for **1BPh**<sub>4</sub>: X-ray quality crystals were grown following diffusion of hexanes vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>74</sub>H<sub>56</sub>B CuN<sub>2</sub>P<sub>2</sub> 1109.49 g/mol, Monoclinic, space group C2/c; a = 18.204(7) Å, b = 18.807(7) Å, c = 18.109(6) Å,  $a = 90^{\circ}$ ,  $\beta = 116.99(13)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 5524.5(4) Å<sup>3</sup>; Z = 4,  $\rho_{calcd} = 1.334$  Mg/m<sup>3</sup>; crystal dimensions 0.250 x 0.120 x 0.120 mm;

diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>a</sub> radiation, 150(2) K,  $\theta_{\text{max}} = 30.622^{\circ}$ ; 91982 reflections, 8513 independent (R<sub>int</sub> = 0.0722), direct methods; absorption coeff ( $\mu = 0.502 \text{ mm}^{-1}$ ), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>o</sub><sup>2</sup>) with SHELXTL V6.1, 362 parameters, 0 restraints,  $R_I = 0.0490 \ (I > 2\sigma)$  and  $wR_2 = 0.1559$  (all data), Goof = 1.005, residual electron density 0.556/-0.477 e Å<sup>-3</sup>.

Crystal structure data for **2PF**<sub>6</sub>: X-ray quality crystals were grown following diffusion of hexanes vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>104</sub>H<sub>80</sub>Cu<sub>2</sub> F<sub>12</sub>N<sub>4</sub>P<sub>6</sub> 1926.62 g/mol, Monoclinic, space group C2/c; *a* = 24.047(7) Å, *b* = 9.432(3) Å, *c* = 20.640(6) Å, *a* = 90°, *β* = 93.49(16)°, *γ* = 90°, V = 4672.9(2) Å<sup>3</sup>; *Z* = 2,  $\rho_{calcd}$  = 1.369 Mg/m<sup>3</sup>; crystal dimensions 0.280 x 0.090 x 0.080 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>a</sub> radiation, 150(2) K,  $\theta_{max}$  = 30.614°; 87059 reflections, 7202 independent (R<sub>int</sub> = 0.0836), direct methods; absorption coeff ( $\mu$  = 0.632 mm<sup>-1</sup>), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>0</sub><sup>2</sup>) with SHELXTL V6.1, 292 parameters, 0 restraints, *R*<sub>1</sub> = 0.0540 (*I* > 2 $\sigma$ ) and *wR*<sub>2</sub> = 0.1144 (all data), Goof = 1.012, residual electron density 0.606/-0.683 e Å<sup>-3</sup>.

Crystal structure data for **2BPh**<sub>4</sub>: X-ray quality crystals were grown following diffusion of diethylether vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>76.50</sub>H<sub>61</sub>B ClCuN<sub>2</sub>P<sub>2</sub> 1180.01 g/mol, Triclinic, space group P-1; a =13.929(6) Å, b = 18.462(8) Å, c = 25.833(12) Å,  $\alpha = 107.47(3)^{\circ}$ ,  $\beta = 95.17(3)^{\circ}$ ,  $\gamma =$ 107.16(3)°, V = 5937.2(5) Å<sup>3</sup>; Z = 4,  $\rho_{calcd} = 1.320$  Mg/m<sup>3</sup>; crystal dimensions 0.100 x 0.100 x 0.050 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub> $\alpha$ </sub> radiation, 150(2) K,  $\theta_{\text{max}} = 27.603^{\circ}$ ; 134866 reflections, 27407 independent (R<sub>int</sub> = 0.1484), direct methods; absorption coeff ( $\mu = 0.515 \text{ mm}^{-1}$ ), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>o</sub><sup>2</sup>) with SHELXTL V6.1, 1508 parameters, 0 restraints,  $R_I = 0.0596$  ( $I > 2\sigma$ ) and  $wR_2 = 0.1528$  (all data), Goof = 1.005, residual electron density 0.411/-0.629 e Å<sup>-3</sup>.

Crystal structure data for **3PF**<sub>6</sub>: X-ray quality crystals were grown following diffusion of diethylether vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>109</sub>H<sub>88Cl2</sub>Cu<sub>2</sub> F<sub>12</sub>N<sub>4</sub>P<sub>6</sub> 2065.63 g/mol, Monoclinic, space group C2/c; a = 27.339(7) Å, b = 25.087(11) Å, c = 17.994(9) Å,  $a = 90^{\circ}$ ,  $\beta = 128.56(10)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 9651.0(8) Å<sup>3</sup>; Z = 4,  $\rho_{calcd} = 1.422$  Mg/m<sup>3</sup>; crystal dimensions 0.320 x 0.200 x 0.090 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>a</sub> radiation, 150(2) K,  $\theta_{max} = 34.390^{\circ}$ ; 158133 reflections, 18551 independent (R<sub>int</sub> = 0.0602), direct methods; absorption coeff ( $\mu = 0.671$  mm<sup>-1</sup>), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>0</sub><sup>2</sup>) with SHELXTL V6.1, 645 parameters, 0 restraints,  $R_I = 0.0580$  ( $I > 2\sigma$ ) and  $wR_2 = 0.1706$  (all data), Goof = 1.000, residual electron density 1.075/-1.409 e Å<sup>-3</sup>.

Crystal structure data for **3BPh**<sub>4</sub>: X-ray quality crystals were grown following diffusion of hexanes vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>39</sub>H<sub>32</sub>B<sub>0.50</sub>Cu<sub>0.50</sub>NP 582.80 g/mol, Triclinic, space group P-1; a = 11.749(4)Å, b = 16.295(6) Å, c = 17.841(6) Å,  $a = 66.52(19)^{\circ}$ ,  $\beta = 87.83(2)^{\circ}$ ,  $\gamma = 88.68(2)^{\circ}$ , V = 3130.62(19) Å<sup>3</sup>; Z = 4,  $\rho_{calcd} = 1.237$  Mg/m<sup>3</sup>; crystal dimensions 0.200 x 0.100 x 0.050 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>a</sub> radiation, 150(2) K,  $\theta_{max} =$ 29.718°; 144753 reflections, 17714 independent (R<sub>int</sub> = 0.0814), direct methods; absorption coeff ( $\mu = 0.446 \text{ mm}^{-1}$ ), absorption correction semi-empirical from equivalents (SADABS); refinement (against  $F_0^2$ ) with SHELXTL V6.1, 761 parameters, 0 restraints,  $R_I = 0.0501$  ( $I > 2\sigma$ ) and  $wR_2 = 0.1400$  (all data), Goof = 1.062, residual electron density 0.489/-0.795 e Å<sup>-3</sup>.

Crystal structure data for  $[(L3)Cu]_2(\mu-Br)_2$ : X-ray quality crystals were grown following diffusion of diethylether vapor into CH<sub>2</sub>Cl<sub>2</sub> at room temperature. Crystal structure parameters: C<sub>55</sub>H<sub>46</sub>Br<sub>2</sub>Cl<sub>2</sub>Cu<sub>2</sub>N<sub>2</sub>P<sub>2</sub> 1154.68 g/mol, triclinic, space group *P*-1; *a* = 12.3597(8) Å, *b* = 13.5264(9) Å, *c* = 14.5021(9) Å, *a* = 80.780(3)°, *β* = 89.069(3)°, *γ* = 88.363(3)°, V = 2392.0(3) Å<sup>3</sup>; Z = 2,  $\rho_{calcd}$  = 1.603 g cm<sup>-3</sup>; crystal dimensions 0.587 x 0.208 x 0.205 mm; diffractometer Bruker D8 QUEST ECO CMOS; Mo K<sub>*α*</sub> radiation, 150(2) K,  $\theta_{max}$  = 27.565°; 79926 reflections, 11013 independent (R<sub>int</sub> = 0.0325), direct methods; absorption coeff ( $\mu$  = 2.779 mm<sup>-1</sup>), absorption correction semi-empirical from equivalents (SADABS); refinement (against F<sub>0</sub><sup>2</sup>) with SHELXTL V6.1, 272 parameters, 0 restraints, *R*<sub>1</sub> = 0.0291 (*I* > 2 $\sigma$ ) and *wR*<sub>2</sub> = 0.0650 (all data), Goof = 1.033, residual electron density 0.700/–0.691 e Å<sup>-3</sup>.

### **OPTICAL SPECTROSCOPY MEASUREMENTS**

The absorption spectra of the complexes were measured in solution in CH<sub>2</sub>Cl<sub>2</sub> in 1 cm quartz cuvettes using a Thermo Scientific Genesys UV–vis spectrometer at room temperature. Emission spectra at 77 K were recorded in 4 mm diameter tubes held within a liquid-nitrogen-cooled quartz dewar, using a Jobin Yvon Fluoromax-2 spectrometer equipped with a Hamamatsu R928 photomultiplier tube (PMT). The spectra in the solid state were recorded by means of an integrating sphere attached to a Jobin Yvon Fluorolog instrument through optical fibers. Finely powdered samples were contained within

Spectralon sample holders of 10 mm diameter. Quantum yields were determined using a sample of finely powdered BaSO<sub>4</sub> as a non-emissive blank. Scattered light at  $\lambda_{ex} = 425$  nm for sample and blank was measured using a neutral density filter of O.D. = 2, while the emission region was monitored in the absence of the filter. The detector for this set-up was also a Hamamatsu R928 PMT. Luminescence lifetimes at ambient temperature were measured by time-correlated single-photon counting (TCSPC) following excitation using a pulsed laser diode at 405 nm and using an R928 PMT for detection. The same detector operating in multichannel scaling (MCS) mode was used to measure the longer lifetimes at 77 K, following excitation with a microsecond-pulsed xenon lamp.



**Figure S1.** Solid-state X-ray structure of  $(L3)_2Cu_2Br_2$  with thermal ellipsoids (where shown at 50% probability levels). Hydrogen atoms and a molecule of the solvent of crystallization (CH<sub>2</sub>Cl<sub>2</sub>) are omitted for clarity.



**Figure S2.** Solid-state X-ray structures of the cationic fragments of  $1PF_6$ ,  $2PF_6$  and  $3PF_6$  with thermal ellipsoids (where shown at 50% probability levels). Hydrogen atoms, counterions and lattice-confined solvent molecules are omitted for clarity.

|                              | $\theta_{Cu}^{a}$ | $\theta_{\text{Phen}}^{b}$ | $\alpha_P^c$ | $\mathbf{\alpha_N}^d$ | P-Cu-P    | N-Cu-N     | ${\beta_{\mathrm{N}}}^{e}$ | $\beta_P^f$ |
|------------------------------|-------------------|----------------------------|--------------|-----------------------|-----------|------------|----------------------------|-------------|
| 1-                           | 86.9              | 88.3                       | 144.27(6)    | 106.41(7)             | 136.73(3) | 105.46(9)  | 5.71(6)                    | 6.56(3)     |
| BPh <sub>4</sub>             |                   |                            |              |                       |           |            |                            |             |
| <b>1-PF</b> <sub>6</sub>     | 83.3              | 79.3                       | 156.77(5),   | 117.82(6),            | 145.49(2) | 109.20(6)  | 2.53(5),                   | 1.34(7),    |
|                              |                   |                            | 151.05(5)    | 122.49(6)             |           |            | 5.94(5)                    | 2.92(6)     |
| 2-                           | 79.6              | 70.45                      | 142.23(9),   | 132.95(12),           | 131.49(4) | 101.40(11) | 0.21(10),                  | 3.05(14),   |
| BPh4 <sup>g</sup>            |                   |                            | 155.53(9)    | 119.91(12)            |           |            | 3.91(10)                   | 7.52(11)    |
|                              | 87.4              | 89.6                       | 146.74(9),   | 126.57(12),           | 137.17(4) | 105.94(11) | 11.90(10),                 | 0.15(14),   |
|                              |                   |                            | 153.00(10)   | 120.98(13)            |           |            | 8.12(10)                   | 3.31(14)    |
| 2-PF <sub>6</sub>            | 88.4              | 84.1                       | 154.16(6)    | 100.27(8)             | 146.99(4) | 100.19(10) | 5.58(6)                    |             |
| 3-                           | 81.5              | 89.4                       | 148.14(6),   | 128.05(7),            | 126.15(2) | 123.78(7)  | 20.29(6),                  | 4.99(7),    |
| BPh <sub>4</sub>             |                   |                            | 129.44(6)    | 143.88(6)             |           |            | 15.22(6)                   | 5.37(7)     |
| $\overline{\mathbf{3-PF}_6}$ | 83.4              | 83.6                       | 140.96(8),   | 133.11(9),            | 133.23(2) | 118.93(7)  | $2\overline{1.09(6)},$     | 8.92(10),   |
|                              |                   |                            | 146.71(6)    | 128.41(8)             |           |            | 17.45(7)                   | 1.10(11)    |

**Table S1.** Dihedral angles (°) from X-ray structures (1X, 2X and 3X;  $X = PF_6$ , BPh<sub>4</sub>).

<sup>a</sup> dihedral angle between planes formed by P1-Cu1-N1/P2-Cu1-N2

<sup>b</sup> dihedral angle between planes formed by C/N atoms of the two phenanthridine moieties

<sup>c</sup> angle formed by (P-Cu) bond vector with P-Cu-N plane of second ligand calculated as  $(180 - \beta)$ .  $\beta$  is the

acute angle between a line through the bond and the perpendicular projection of that bond on the plane.

<sup>d</sup> angle formed by (N-Cu) bond vector with P-Cu-N plane of second ligand.

<sup>e</sup> dihedral angle between (N-Cu) bond vector and phenanthridine plane of same ligand.

<sup>f</sup> dihedral angle between (P-Cu) bond vector and phenanthridine plane of same ligand.

<sup>g</sup> two crystallographically distinct molecules in the asymmetric unit



Figure S3. UV-Vis absorption spectra of 1X, 2X and 3X recorded in  $CH_2Cl_2$  at room temperature.



Figure S4. Absorption spectra of L1, L2, and L3 in  $CH_2Cl_2$  at  $298 \pm 3$  K.



**Figure S5.** Cyclic voltammograms of  $1-PF_6$ ,  $2-PF_6$  and  $3-PF_6$  ([analyte] = 1.1 mM; 0.1 M [ $nBu_4N$ ][PF<sub>6</sub>], 100 mV/s scan rate).

|                  | $E_{ m peak,\ cathodic}$ | <b>E</b> peak, anodic | $\Delta E_{	ext{cathodic-anodic}}$ |
|------------------|--------------------------|-----------------------|------------------------------------|
| 1PF <sub>6</sub> | -2.142                   | 0.755                 | 2.897                              |
| 2PF <sub>6</sub> | -2.216                   | 0.741                 | 2.957                              |
| 3PF <sub>6</sub> | -2.355                   | $0.690, 0.335^a$      | 3.045                              |

**Table S2.** Tabulated potentials vs.  $FcH^{0/+}$  of irreversible redox events for  $1PF_6$ ,  $2PF_6$  and  $3PF_6$  ([analyte] = 1.1 mM; 0.1 mM [ $nBu_4N$ ][ $PF_6$ ], 100 mV/s scan rate)

<sup>*a*</sup> Minor anodic peak observable in Figure S1.



**Figure S6**. Optical photographs of **1X-3X** under UV light ( $\lambda = 365$  nm).



Figure S7. Emission spectra of ligands L1, L2, and L3 in EPA at 77 K (EPA = diethyl ether / isopentane / ethanol, 2:2:1 v/v);  $\lambda_{ex} = 370$  nm.

## NMR SPECTRA

RAJ-0-4-048-D5H.2.fid Acyl,MeBrPhenanthridine PROTON CD2CI2 C:\\ Herbert 1 3.01 2.55 8.52 7.83 5.32 CD2Cl2 2.68 1.69⊣ 0.93⊣ī 1.02 -₹ 1.00 0.95 -₹ 3.08-I 3.03-3.0 4.5 4.0 3.5 2.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Figure S8. <sup>1</sup>H NMR (500 MHz, 22°C, CD<sub>2</sub>Cl<sub>2</sub>) of 4-bromo-2,6-dimethylphenanthridine.

RAJ-0-4-048-D5C.2.fid Acyl,MeBrPhenanthridine C13CPD CD2CI2 C:\\ Herbert 1



Figure S9.  $^{13}C{^{1}H}$  (126 MHz, 22°C, CD<sub>2</sub>Cl<sub>2</sub>) of 4-bromo-2,6-dimethylphenanthridine.

RAJ-04-048-G5H.2.fid Acyl,MePN ligand PROTON CD2Cl2 C:\\ Herbert 1



Figure S10. <sup>1</sup>H NMR (500 MHz, 22°C, CD<sub>2</sub>Cl<sub>2</sub>) spectrum of L3.

RAJ-04-048-G5C.1.fid Acyl,MePN ligand C13CPD CD2Cl2 C:\\ Herbert 1



Figure S11.  ${}^{13}C{}^{1}H$  (126 MHz, 22°C, CD<sub>2</sub>Cl<sub>2</sub>) NMR spectrum of L3.

RAJ-04-048-G5P.1.fid Acyl,MePN ligand P31CPD CD2CI2 C:\\ Herbert 1



12.97

Figure S12.  ${}^{31}P{}^{1}H$  (202 MHz, 22°C, CD<sub>2</sub>Cl<sub>2</sub>) NMR spectrum of L3 in CD<sub>2</sub>Cl<sub>2</sub>.



Figure S13. <sup>1</sup>H NMR (300 MHz, 22°C) spectrum of 1PF<sub>6</sub> in CDCl<sub>3</sub>.

RAJ-04-022-I3C.1.fid ParentPhenCuPF6 C13CPD CDCl3 C:\\ Herbert 1



Figure S14. <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, 22°C) spectrum of  $1PF_6$  in CDCl<sub>3</sub>.



Figure S15.  ${}^{31}P{}^{1}H$  (121 MHz, 22°C) NMR spectrum of 1PF<sub>6</sub> in CDCl<sub>3</sub>.

RAJ-04-022-I3F.1.fid ParentPhenCuPF6 F19CPD CDCI3 C:\\ Herbert 1



Figure S16. <sup>19</sup>F NMR (282 MHz, 22°C) spectrum of 1PF<sub>6</sub> in CDCl<sub>3</sub>.

RAJ-04-021-E5H.2.fid ParentPNCuBPh4 PROTON CDCl3 C:\\ Herbert 1



Figure S17. <sup>1</sup>H NMR (500 MHz, 22°C) spectrum of 1BPh<sub>4</sub> in CDCl<sub>3</sub>.



Figure S18. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, 22°C) spectrum of  $1BPh_4$  in CDCl<sub>3</sub>.

RAJ-04-021-E5P.1.fid ParentPNCuBPh4 P31CPD CDCl3 C:\\ Herbert 1



Figure S19.  ${}^{31}P{}^{1}H$  (202 MHz, 22°C) NMR spectrum of 1BPh<sub>4</sub> in CDCl<sub>3</sub>.

RAJ-04-021-D3H.1.fid MePNCuPF6 PROTON CDCI3 C:\\ Herbert 2



Figure S20. <sup>1</sup>H NMR (300 MHz, 22°C) spectrum of 2PF<sub>6</sub> in CDCl<sub>3</sub>.



Figure S21. <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, 22°C) spectrum of  $2PF_6$  in CDCl<sub>3</sub>.

RAJ-04-021-D3P.1.fid MePNCuPF6 P31CPD CDCl3 C:\\ Herbert 2



Figure S22.  ${}^{31}P{}^{1}H{}$  (121 MHz, 22°C) NMR spectrum of 2PF<sub>6</sub> in CDCl<sub>3</sub>.

RAJ-04-021-D3F.1.fid MePNCuPF6 F19CPD CDCl3 C:\\ Herbert 2



Figure S23. <sup>19</sup>F NMR (282 MHz, 22°C) spectrum of **2PF**<sub>6</sub> in CDCl<sub>3</sub>.



Figure S24. <sup>1</sup>H NMR (500 MHz, 22°C) spectrum of 2BPh<sub>4</sub> in CDCl<sub>3</sub>.



Figure S25. <sup>13</sup>C $\{^{1}H\}$  NMR (126 MHz, 22°C) spectrum of **2BPh**<sub>4</sub> in CDCl<sub>3</sub>.

RAJ-04-021-85P.1.tid MePNCuBPh4 P31CPD CDCl3 C:\\ Herbert 1



Figure S26.  ${}^{31}P{}^{1}H$  (202 MHz, 22°C) NMR spectrum of 2BPh<sub>4</sub> in CDCl<sub>3</sub>.

#### RAJ-04-061-C3H.1.fid Acyl,MePNCuBr PROTON CDCl3 {C:\Bruker\TOPSPIN1.3} Herbert 18



Figure S27. <sup>1</sup>H NMR (300 MHz, 22°C) spectrum of (L3)<sub>2</sub>Cu<sub>2</sub>(μ-Br)<sub>2</sub> in CDCl<sub>3</sub>.



Figure S28. <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, 22°C) spectrum of (L3)<sub>2</sub>Cu<sub>2</sub>( $\mu$ -Br)<sub>2</sub> in CDCl<sub>3</sub>.

RAJ-04-051-D5P.2.fid Acyl,MePNCuBr P31CPD CDCl3 C:\\ Herbert 2



Figure S29.  ${}^{31}P{}^{1}H$  (121 MHz, 22°C) NMR spectrum of (L3)<sub>2</sub>Cu<sub>2</sub>(  $\mu$ -Br)<sub>2</sub> in CDCl<sub>3</sub>.





Figure S30. <sup>1</sup>H NMR (500 MHz, 22°C) spectrum of 3PF<sub>6</sub> in CDCl<sub>3</sub>.





Figure S31. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, 22°C) spectrum of  $3PF_6$  in CDCl<sub>3</sub>.

# RAJ-04-048-C3P.2.1nd acyl,MePNCuPF6 2nd batch as -04-048-B3h is actually bromide counter ion P31CPD CDCl3 C:\\ Herbert 2



Figure S32.  ${}^{31}P{}^{1}H$  (121 MHz, 22°C) NMR spectrum of 3PF<sub>6</sub> in CDCl<sub>3</sub>.



Figure S33. <sup>19</sup>F NMR(282 MHz, 22°C) NMR spectrum of **3PF**<sub>6</sub> in CDCl<sub>3</sub>.

RAJ-04-048-E5H.2.fid Acyl,MePNCuBPh4 PROTON CD2Cl2 C:\\ Herbert 1



Figure S34. <sup>1</sup>H NMR (500 MHz, 22°C) spectrum of 3BPh<sub>4</sub> in CDCl<sub>3</sub>.



Figure S35. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, 22°C) spectrum of **3BPh<sub>4</sub>** in CDCl<sub>3</sub>.





Figure S36.  ${}^{31}P{}^{1}H$  (121 MHz, 22°C) NMR spectrum of **3BPh**<sub>4</sub> in CDCl<sub>3</sub>.

## **COMPUTATIONAL DETAILS**

All calculations were carried out using the Gaussian 16, Revision B.01 software package.<sup>9</sup> Optimization of the ground state geometries  $(S_0)$  was carried out in the gas phase with the dispersion-corrected CAM-B3LYP functional<sup>10</sup>using Grimme's D3 dispersion and Becke-Johnson damping,<sup>11</sup> and the def2-svp basis set<sup>12</sup> on all atoms. Crystal structure coordinates obtained for the  $[Cu(P^N)_2][PF_6]$  analogues were used as starting input. Subsequently, the T<sub>1</sub> state geometries were optimized at the same level of theory with CAM-B3LYP-D3(BJ)/def2-svp, using the optimized  $S_0$  geometries as starting input. Frequency analyses on all optimized structures were performed at the same level of theory to confirm that these are at a minimum on the potential energy surface. All single point calculations, including time-dependent DFT (TDDFT), were carried out with the M06 functional<sup>13</sup> and def2-svp basis set on all atoms. TDDFT analyses on 1X, 2X, and **3X** were carried out with the GaussSum software.<sup>14</sup> All structures presented and MOs were generated using the Avogadro molecular editing software,<sup>15</sup> and the fragment contributions to the MOs were analyzed with the OMForge software.<sup>16</sup> The electron-hole density maps for the  $S_1 \leftarrow S_0$  transition of the three complexes were extracted from the TDDFT output files and generated using the Multiwfn program.<sup>17</sup> The electron or 'to' and hole or 'from' orbitals are shown in green and blue, respectively. The photophysical parameters: adiabatic energy,  $\Delta E(adiab)$ ; phosphorescence energy,  $\Delta E(phos)$ ; and reorganization energy,  $\lambda_T$ , were calculated as previously reported.<sup>4</sup> The  $\Delta E(S_1-T_1)$  gap is estimated from the difference between the TDDFT energy of the S<sub>1</sub> state,  $\Delta E(S_1-TD)$ ; and the single point energy obtained for the optimized  $T_1$  geometry.



**Figure S37.** Alternate view of DFT optimized structures of (a)  $S_0$  and (b)  $T_1$  states for  $1^+$ .



**Figure S38.** Alternate view of DFT optimized structures of (a)  $S_0$  and (b)  $T_1$  states for  $2^+$ .



**Figure S39.** Alternate view of DFT optimized structures of (a)  $S_0$  and (b)  $T_1$  states for  $3^+$ .

|                                         | 1              | +                     |                | <b>2</b> <sup>+</sup> | 3              | <b>}</b> <sup>+</sup> |
|-----------------------------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|
| Bond (Å)                                | S <sub>0</sub> | <b>T</b> <sub>1</sub> | S <sub>0</sub> | $T_1$                 | $S_0$          | T <sub>1</sub>        |
| Cu-N1                                   | 2.104          | 1.921                 | 2.102          | 2.097                 | 2.146          | 2.185                 |
| Cu-N2                                   | 2.104          | 2.098                 | 2.102          | 1.920                 | 2.121          | 1.945                 |
| Cu-P1                                   | 2.238          | 2.297                 | 2.238          | 2.299                 | 2.244          | 2.262                 |
| Cu-P2                                   | 2.237          | 2.271                 | 2.238          | 2.272                 | 2.257          | 2.290                 |
| Angle (°)                               | S <sub>0</sub> | <b>T</b> <sub>1</sub> | S <sub>0</sub> | $T_1$                 | S <sub>0</sub> | T <sub>1</sub>        |
| N1-Cu-N2                                | 109.2          | 105.6                 | 109.2          | 105.8                 | 118.5          | 120.9                 |
| N1-Cu-P1                                | 85.7           | 84.4                  | 115.5          | 114.7                 | 86.0           | 84.1                  |
| N1-Cu-P2                                | 115.5          | 159.0                 | 85.8           | 84.2                  | 114.5          | 113.2                 |
| N2-Cu-P1                                | 115.4          | 115.0                 | 85.8           | 84.4                  | 124.2          | 144.9                 |
| N2-Cu-P2                                | 85.7           | 84.1                  | 115.5          | 159.0                 | 86.4           | 85.9                  |
| P1-Cu-P2                                | 144.3          | 108.7                 | 144.1          | 108.6                 | 130.6          | 107.7                 |
| $\angle (PCuN)_{plane}$                 | 154.0°,        | 120.9°,               | 149.2°,        | 123.5°,               | 135.5°,        | 146.2°,               |
| $-(CuP)_{bond}$                         | 153.3°         | 160.4°                | 151.8°         | 161.4°                | 143.5°         | 115.4°                |
| $\angle (C_{6b} - N - Cu)$              | 170.2°,        | 171.4°,               | 170.2°,        | 163.7°,               | 174.2°,        | 174.2°,               |
|                                         | 170.2°         | 164.1°                | 170.2°         | 171.6°                | 169.8°         | 169.8°                |
| $\angle(C_1-C_4-P)$                     | 177.4°,        | 173.8°,               | 177.6°,        | 176.9°,               | 178.7°,        | 178.7°,               |
|                                         | 177.4°         | 176.7°                | 177.6°         | 174.0°                | 178.3°         | 178.3°                |
| $\mathbf{\theta}_{\mathrm{Cu}}^{a}$     | 85.3           | 73.0                  | 85.3           | 72.1                  | 85.5           | 80.3                  |
| $\mathbf{\theta}_{\mathrm{Phen}}{}^{b}$ | 82.3           | 71.9                  | 82.6           | 73.6                  | 86.2           | 79.0                  |

**Table S3.** Selected bond distances [Å] and angles [°] for the DFT-optimized  $S_0$  and  $T_1$  state structures of  $1^+$ ,  $2^+$ , and  $3^+$ .

<sup>*a*</sup> dihedral angle between planes formed by P1-Cu1-N1/P2-Cu1-N2 <sup>*b*</sup> dihedral angle between planes formed by carbon/nitrogen atoms of the two phenanthridine moieties

**Table S4.** Geometric indices  $(\tau_{\delta})^{18}$  of 1X, 2X, and 3X (X = PF<sub>6</sub> or BPh<sub>4</sub>) crystal structures, and DFT optimized S<sub>0</sub> and T<sub>1</sub> structures of **1**<sup>+</sup>, **2**<sup>+</sup> and **3**<sup>+</sup>.

| $	au_{\delta}$ | $\mathbf{PF}_{6}$ | BPh <sub>4</sub> | S <sub>0</sub> | $T_1$ |
|----------------|-------------------|------------------|----------------|-------|
| 1X             | 0.56              | 0.64             | 0.57           | 0.44  |
| 2X             | 0.54              | 0.64             | 0.57           | 0.44  |
| <b>3</b> X     | 0.70              | 0.72             | 0.71           | 0.56  |

**Table S5.** Calculated photophysical parameters for  $1^+$ ,  $2^+$  and  $3^+$  complexes.

| <i>E</i> (eV)                                | $1^+$ | 2+    | 3+    |
|----------------------------------------------|-------|-------|-------|
| $\Delta E (\mathbf{S}_1 - \mathbf{TD})^a$    | 3.110 | 3.172 | 3.158 |
| $\Delta E$ (S <sub>1</sub> -T <sub>1</sub> ) | 0.863 | 0.901 | 0.721 |
| $\Delta E(adiab)$                            | 2.247 | 2.272 | 2.436 |
| $\Delta E$ (phos)                            | 1.444 | 1.477 | 1.691 |
| λ <sub>T</sub>                               | 0.803 | 0.795 | 0.745 |

<sup>*a*</sup> Energy of the S<sub>1</sub> state estimated by TDDFT

| Complex               | State          | Calc. λ <sub>abs.</sub><br>(nm) | Oscillator<br>strength | MO character                | % Contribution |
|-----------------------|----------------|---------------------------------|------------------------|-----------------------------|----------------|
|                       | $S_1$          | 398.70                          | 0.0046                 | $HOMO \rightarrow LUMO$     | 49%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO+1 | 47%            |
|                       | $S_2$          | 398.13                          | 0.0011                 | HOMO-1 $\rightarrow$ LUMO   | 54%            |
| 1+                    |                |                                 |                        | $HOMO \rightarrow LUMO+1$   | 41%            |
|                       | $S_3$          | 376.85                          | 0.0494                 | HOMO-1 $\rightarrow$ LUMO+1 | 50%            |
|                       |                |                                 |                        | $HOMO \rightarrow LUMO$     | 48%            |
|                       | $S_4$          | 375.85                          | 0.0142                 | $HOMO \rightarrow LUMO+1$   | 55%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO   | 42%            |
|                       | $S_1$          | 390.87                          | 0.0049                 | $HOMO \rightarrow LUMO$     | 49%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO+1 | 47%            |
|                       | $S_2$          | 390.30                          | 0.0013                 | HOMO-1 $\rightarrow$ LUMO   | 55%            |
| $2^+$                 |                |                                 |                        | $HOMO \rightarrow LUMO+1$   | 41%            |
|                       | $S_3$          | 369.80                          | 0.528                  | HOMO-1 $\rightarrow$ LUMO+1 | 51%            |
|                       |                |                                 |                        | $HOMO \rightarrow LUMO$     | 47%            |
|                       | $S_4$          | 368.87                          | 0.0132                 | $HOMO \rightarrow LUMO+1$   | 55%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO   | 42%            |
|                       | $\mathbf{S}_1$ | 392.65                          | 0.0180                 | HOMO → LUMO                 | 85%            |
| <b>3</b> <sup>+</sup> | $S_2$          | 387.03                          | 0.0148                 | $HOMO \rightarrow LUMO+1$   | 84%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO+1 | 10%            |
|                       | $S_3$          | 358.16                          | 0.0299                 | HOMO-1 $\rightarrow$ LUMO+1 | 58%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO   | 29%            |
|                       | $S_4$          | 357.43                          | 0.0100                 | HOMO-1 $\rightarrow$ LUMO   | 58%            |
|                       |                |                                 |                        | HOMO-1 $\rightarrow$ LUMO+1 | 27%            |

**Table S6.** First four TD-DFT calculated electronic transitions for  $1^+$ ,  $2^+$  and  $3^+$  with the corresponding oscillators strengths and MO characters (>10% contribution).



**Figure S40.** TD-DFT orbital energies, HOMO-LUMO gap ( $\Delta E_{H-L}$ ), and frontier molecular orbital (MO; isosurface value = 0.05) diagrams of  $\mathbf{1}^+$ ,  $\mathbf{2}^+$ , and  $\mathbf{3}^+$ .



**Figure S41.** Electron-hole density maps (green = electron, blue = hole; isosurface value = 0.002) for the  $S_1 \leftarrow S_0$  transition of  $\mathbf{1}^+$ ,  $\mathbf{2}^+$  and  $\mathbf{3}^+$ .

| Fragment              | HOMO-1 | НОМО | LUMO | LUMO+1 |
|-----------------------|--------|------|------|--------|
| Cu                    | 36.2   | 26.6 | 0.9  | 0.5    |
| $\mathbf{P}_1$        | 9.0    | 13.5 | 0.4  | 0.5    |
| $Ph_{1a}$             | 7.8    | 5.6  | 0.7  | 0.4    |
| $Ph_{1b}$             | 2.0    | 8.4  | 2.0  | 1.3    |
| $(\text{HC=N})_1^a$   | 5.2    | 3.2  | 19.8 | 15.7   |
| $(Ar_{phenan})_1^{b}$ | 7.8    | 6.2  | 33.7 | 24.8   |
| $P_2$                 | 9.1    | 13.4 | 0.4  | 0.5    |
| Ph <sub>2a</sub>      | 7.8    | 5.5  | 0.6  | 0.5    |
| $Ph_{2b}$             | 2.0    | 8.3  | 2.2  | 1.2    |
| $(\text{HC=N})_2^a$   | 5.3    | 3.2  | 14.5 | 20.9   |
| $(Ar_{phenan})_2^{b}$ | 7.9    | 6.1  | 24.8 | 33.6   |

**Table S7.** Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of  $1^+$ . Fragment contributions >10% are in bold.

<sup>*a*</sup> (HC=N)<sub>*n*</sub> refers to the imine-bridge fragment of phenanthridine.

<sup>*b*</sup>  $(Ar_{phenan})_n$  refers to the biphenyl fragment of phenanthridine.

| Fragment                     | HOMO-1 | НОМО | LUMO | LUMO+1 |
|------------------------------|--------|------|------|--------|
| Cu                           | 36.2   | 26.7 | 0.9  | 0.5    |
| <b>P</b> <sub>1</sub>        | 9.0    | 13.4 | 0.4  | 0.6    |
| $Ph_{1a}$                    | 7.7    | 5.4  | 0.7  | 0.5    |
| $Ph_{1b}$                    | 1.9    | 8.2  | 2.2  | 1.2    |
| $(\text{HC=N})_1^a$          | 5.3    | 3.3  | 17.1 | 18.3   |
| $(Ar_{phenan})_1^{b}$        | 8.0    | 6.2  | 28.9 | 28.8   |
| Me <sub>1</sub> <sup>c</sup> | 0.1    | 0.1  | 0.3  | 0.4    |
| P <sub>2</sub>               | 9.0    | 13.4 | 0.4  | 0.6    |
| Ph <sub>2a</sub>             | 7.7    | 5.4  | 0.7  | 0.5    |
| $Ph_{2b}$                    | 1.9    | 8.2  | 2.2  | 1.2    |
| $(\text{HC=N})_2^a$          | 5.3    | 3.3  | 17.1 | 18.3   |
| $(Ar_{phenan})_2^{b}$        | 8.0    | 6.2  | 28.9 | 28.9   |
| $\operatorname{Me_2}^{c}$    | 0.1    | 0.1  | 0.3  | 0.45   |

**Table S8.** Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of  $2^+$ . Fragment contributions >10% are in bold.

<sup>*a*</sup> (HC=N)<sub>*n*</sub> refers to the imine-bridge fragment of phenanthridine.

<sup>*b*</sup>  $(Ar_{phenan})_n$  refers to the biphenyl fragment of phenanthridine.

<sup>c</sup> Me<sub>*na*</sub> refers to the methyl substituent at the C<sub>2</sub>-position of phenanthridine.

| Fragment               | HOMO-1 | НОМО | LUMO | LUMO+1 |
|------------------------|--------|------|------|--------|
| Cu                     | 36.4   | 25.2 | 0.9  | 0.8    |
| $\mathbf{P}_1$         | 7.9    | 13.9 | 0.3  | 0.4    |
| $(C=N)_1^a$            | 5.7    | 2.2  | 0.5  | 32.5   |
| $(Ar_{phenan})_1^{b}$  | 7.8    | 5.3  | 0.5  | 54.5   |
| $Ph_{1a}$              | 8.0    | 5.6  | 0.1  | 0.9    |
| $Ph_{1b}$              | 2.1    | 8.6  | 0.5  | 1.0    |
| $\mathrm{Me_{1a}}^{c}$ | 0.1    | 0.1  | 0.0  | 0.7    |
| ${\rm Me_{1b}}^d$      | 1.5    | 0.3  | 1.4  | 3.9    |
| <b>P</b> <sub>2</sub>  | 8.4    | 15.3 | 0.4  | 0.4    |
| $(C=N)_2^a$            | 4.5    | 2.8  | 33.2 | 0.3    |
| $(Ar_{phenan})_2^{b}$  | 6.0    | 6.7  | 55.2 | 1.0    |
| Ph <sub>2a</sub>       | 8.2    | 5.9  | 1.1  | 0.4    |
| $Ph_{2b}$              | 1.5    | 7.5  | 1.2  | 1.6    |
| $Me_{2a}$ <sup>c</sup> | 0.1    | 0.1  | 0.7  | 0.0    |
| $Me_{2b}$ <sup>d</sup> | 1.9    | 0.5  | 4.2  | 1.5    |

**Table S9.** Fragment contributions to the two highest occupied MOs and two lowest unoccupied MOs of  $3^+$ . Fragment contributions >10% are in bold.

<sup>*a*</sup> (C=N)<sub>*n*</sub> refers to the imine-bridge fragment of phenanthridine.

<sup>*b*</sup> (Ar<sub>phenan</sub>)<sub>*n*</sub> refers to the biphenyl fragment of phenanthridine.

<sup>c</sup> Me<sub>*na*</sub> refers to the methyl substituent at the C<sub>2</sub>-position of phenanthridine.

<sup>*d*</sup>  $Me_{nb}$  refers to the methyl substituent at the C<sub>6</sub>-position of phenanthridine.

## **Energies and Reaction Coordinates**

## $1^{+}(S_{0})$

| HF = -4356.9073317 hartrees                  |              |
|----------------------------------------------|--------------|
| Zero-point correction=                       | 0.726635     |
| (Hartree/Particle)                           |              |
| Thermal correction to Gibbs Free Energy=     | 0.643816     |
| Sum of electronic and zero-point Energies=   | -4356.180696 |
| Sum of electronic and thermal Free Energies= | -4356.263515 |

| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coord<br>X | dinates (Ang<br>Y | stroms)<br>Z |
|------------------|------------------|----------------|------------|-------------------|--------------|
| 1                | 29               |                | -0.000323  | -0.001770         | 0.293419     |
| 2                | 15               | 0              | -1.424963  | 1.580375          | 0.981777     |
| -                | 6                | 0              | -1.703381  | 1.100502          | 3.680063     |
| 4                | 1                | 0              | -1.300317  | 0.117489          | 3.423255     |
| 5                | 6                | 0              | -1.866131  | 2.064262          | 2.678354     |
| 6                | 6                | 0              | -2.045838  | 1.392564          | 4.995802     |
| 7                | 1                | 0              | -1.919225  | 0.634959          | 5.771636     |
| 8                | 6                | 0              | -2.691484  | 3.621264          | 4.332030     |
| 9                | 1                | 0              | -3.072313  | 4.611703          | 4.588600     |
| 10               | 6                | 0              | -2.539580  | 2.654010          | 5.322518     |
| 11               | 1                | 0              | -2.801947  | 2.886585          | 6.356439     |
| 12               | 6                | 0              | -2.357669  | 3.329636          | 3.012114     |
| 13               | 1                | 0              | -2,472536  | 4.094051          | 2.240865     |
| 14               | 7                | 0              | -1.579286  | -0.672258         | -0.924114    |
| 15               | 6                | 0              | -2.848194  | -0.185388         | -0.644317    |
| 16               | 6                | 0              | -1.434762  | -1.646843         | -1.767167    |
| 17               | 1                | 0              | -0.417031  | -2.003523         | -1.953867    |
| 18               | 6                | 0              | -2.519097  | -2.286778         | -2.442835    |
| 19               | 6                | 0              | -4.000912  | -0.743935         | -1.243796    |
| 20               | 6                | 0              | -3.833474  | -1.840780         | -2.181472    |
| 21               | 6                | 0              | -5.260822  | -0.215279         | -0.895510    |
| 22               | 1                | 0              | -6.163204  | -0.631113         | -1.342497    |
| 23               | -                | 0              | -2 283681  | -3 354306         | -3 333868    |
| 2.4              | 1                | 0              | -1.256884  | -3.684116         | -3.504973    |
| 2.5              | - 6              | 0              | -5.374506  | 0.817444          | 0.009761     |
| 26               | 1                | 0              | -6.359722  | 1.205677          | 0.273014     |
| 27               | 6                | 0              | -4.898057  | -2.487623         | -2.840513    |
| 28               | 1                | 0              | -5.926278  | -2.172715         | -2.666416    |
| 29               | 6                | 0              | -3.340659  | -3.969482         | -3.964511    |
| 30               | 1                | 0              | -3.167649  | -4.795993         | -4.655595    |
| 31               | 6                | 0              | -4.652785  | -3.527765         | -3.713200    |
| 32               | 1                | 0              | -5.490284  | -4.016509         | -4.214730    |
| 33               | 6                | 0              | -1.150038  | 3.141794          | 0.074088     |
| 34               | 6                | 0              | -0.014227  | 3.890526          | 0.414090     |
| 35               | 1                | 0              | 0.610238   | 3.579953          | 1.255880     |
| 36               | 6                | 0              | 0.330834   | 5.020269          | -0.316641    |
| 37               | 1                | 0              | 1.214894   | 5.597429          | -0.039149    |
| 38               | 6                | 0              | -1.922790  | 3.537606          | -1.019889    |
| 39               | 1                | 0              | -2.806837  | 2.964487          | -1.302933    |
| 40               | 6                | 0              | -1.568217  | 4.666610          | -1.758644    |
| 41               | 1                | 0              | -2.181641  | 4.968804          | -2.609856    |
| 42               | 6                | 0              | -0.444701  | 5.408961          | -1.409270    |
| 43               | 1                | 0              | -0.171315  | 6.294438          | -1.986449    |
| 44               | 6                | 0              | -2.971813  | 0.895130          | 0.271172     |
| 45               | 6                | 0              | -4.227189  | 1.373854          | 0.594894     |
| 46               | 1                | 0              | -4.328690  | 2.189557          | 1.313268     |
| 47               | 15               | 0              | 1.428066   | -1.581852         | 0.978015     |
| 48               | 6                | 0              | 1.708787   | -1.105715         | 3.676705     |
| 49               | 1                | 0              | 1.303227   | -0.123184         | 3.422002     |
| 50               | 6                | 0              | 1.872350   | -2.067496         | 2.673239     |
| 51               | 6                | 0              | 2.053589   | -1.399150         | 4.991533     |

| 52 | 1 | 0 | 1.926296  | -0.643083 | 5.768755  |
|----|---|---|-----------|-----------|-----------|
| 53 | 6 | 0 | 2.703318  | -3.625341 | 4.323311  |
| 54 | 1 | 0 | 3.086677  | -4.615341 | 4.577792  |
| 55 | 6 | 0 | 2.550549  | -2.660017 | 5.315560  |
| 56 | 1 | 0 | 2.814774  | -2.893682 | 6.348763  |
| 57 | 6 | 0 | 2.367139  | -3.332324 | 3.004313  |
| 58 | 1 | 0 | 2.482683  | -4.095239 | 2.231679  |
| 59 | 7 | 0 | 1.575635  | 0.670666  | -0.928010 |
| 60 | 6 | 0 | 2.845898  | 0.186616  | -0.649554 |
| 61 | 6 | 0 | 1.428114  | 1.644862  | -1.770967 |
| 62 | 1 | 0 | 0.409408  | 1.999287  | -1.956648 |
| 63 | 6 | 0 | 2.510339  | 2.287182  | -2.447773 |
| 64 | 6 | 0 | 3.996771  | 0.747591  | -1.250288 |
| 65 | 6 | 0 | 3.825967  | 1.844108  | -2.187734 |
| 66 | 6 | 0 | 5.258166  | 0.221524  | -0.903442 |
| 67 | 1 | 0 | 6.159186  | 0.639242  | -1.351422 |
| 68 | 6 | 0 | 2.271680  | 3.354205  | -3.338541 |
| 69 | 1 | 0 | 1.243999  | 3.681769  | -3.508612 |
| 70 | 6 | 0 | 5.374989  | -0.811054 | 0.001593  |
| 71 | 1 | 0 | 6.361295  | -1.197312 | 0.263666  |
| 72 | 6 | 0 | 4.888458  | 2.493329  | -2.847812 |
| 73 | 1 | 0 | 5.917546  | 2.180694  | -2.674742 |
| 74 | 6 | 0 | 3.326661  | 3.971767  | -3.970196 |
| 75 | 1 | 0 | 3.151123  | 4.797917  | -4.661076 |
| 76 | 6 | 0 | 4.640015  | 3.532967  | -3.720203 |
| 77 | 1 | 0 | 5.475929  | 4.023591  | -4.222542 |
| 78 | 6 | 0 | 1.153696  | -3.142321 | 0.068484  |
| 79 | 6 | 0 | 0.020738  | -3.894382 | 0.410637  |
| 80 | 1 | 0 | -0.601485 | -3.587242 | 1.255340  |
| 81 | 6 | 0 | -0.324338 | -5.023159 | -0.321588 |
| 82 | 1 | 0 | -1.206123 | -5.602967 | -0.042380 |
| 83 | 6 | 0 | 1.923566  | -3.533855 | -1.029062 |
| 84 | 1 | 0 | 2.805394  | -2.958129 | -1.313748 |
| 85 | 6 | 0 | 1.568954  | -4.661893 | -1.769270 |
| 86 | 1 | 0 | 2.180132  | -4.960731 | -2.623278 |
| 87 | 6 | 0 | 0.448275  | -5.407548 | -1.417811 |
| 88 | 1 | 0 | 0.174892  | -6.292296 | -1.996111 |
| 89 | 6 | 0 | 2.972789  | -0.893656 | 0.265760  |
| 90 | 6 | 0 | 4.229485  | -1.369890 | 0.587982  |
| 91 | 1 | 0 | 4.333477  | -2.185473 | 1.306128  |

## 1<sup>+</sup> (T<sub>1</sub>)

| HF = -4356.8225394 hartrees                  |              |  |  |  |  |
|----------------------------------------------|--------------|--|--|--|--|
| Zero-point correction=                       | 0.723727     |  |  |  |  |
| (Hartree/Particle)                           |              |  |  |  |  |
| Thermal correction to Gibbs Free Energy=     | 0.640649     |  |  |  |  |
| Sum of electronic and zero-point Energies=   | -4356.098813 |  |  |  |  |
| Sum of electronic and thermal Free Energies= | -4356.181890 |  |  |  |  |
|                                              |              |  |  |  |  |

|                  |                  | Standard       | orientation: |                   |             |
|------------------|------------------|----------------|--------------|-------------------|-------------|
| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coord<br>X   | inates (Angs<br>Y | troms)<br>Z |
| 1                | 29               | 0              | -0.212856    | 0.260850          | 0.586020    |

| 2  | 15 | 0 | -0.101624 | 1.462900  | -1.368231 |
|----|----|---|-----------|-----------|-----------|
| 3  | 6  | 0 | 1.729102  | 3.488725  | -1.080677 |
| 4  | 1  | 0 | 1.337808  | 3.553310  | -0.062660 |
| 5  | 6  | 0 | 1.213019  | 2.538138  | -1.971114 |
| 6  | 6  | 0 | 2.739328  | 4.348179  | -1.489943 |
| 7  | 1  | 0 | 3.137644  | 5.087815  | -0.793552 |
| 8  | 6  | 0 | 2.742372  | 3.311777  | -3.671077 |
| 9  | 1  | 0 | 3.135659  | 3.246918  | -4.687312 |
| 10 | 6  | 0 | 3.248331  | 4.258645  | -2.784910 |
| 11 | 1  | 0 | 4.044321  | 4.933760  | -3.105181 |
| 12 | 6  | 0 | 1.724534  | 2.450913  | -3.269240 |
| 13 | 1  | 0 | 1.324888  | 1.715973  | -3.969872 |
| 14 | 7  | 0 | -2.048276 | 0.826179  | 0.608131  |
| 15 | 6  | 0 | -2.492918 | 1.842692  | -0.188983 |
| 16 | 6  | 0 | -2.881197 | 0.283973  | 1.562799  |
| 17 | 1  | 0 | -2.486035 | -0.549578 | 2.147297  |
| 18 | 6  | 0 | -4.173898 | 0.780106  | 1.799107  |
| 19 | 6  | 0 | -3.791946 | 2.409349  | -0.035012 |
| 20 | 6  | 0 | -4.672685 | 1.859783  | 1.006398  |
| 21 | 6  | 0 | -4.145850 | 3.466375  | -0.872070 |
| 22 | 1  | 0 | -5.128157 | 3.924896  | -0.757908 |
| 23 | 6  | 0 | -5.010544 | 0.227049  | 2.805466  |
| 24 | 1  | 0 | -4.628964 | -0.597606 | 3.412215  |
| 25 | 6  | 0 | -3.284999 | 3.978034  | -1.851025 |
| 26 | 1  | 0 | -3.606789 | 4.811970  | -2.475844 |
| 27 | 6  | 0 | -5.964887 | 2.334017  | 1.249132  |
| 28 | 1  | 0 | -6.362614 | 3.156250  | 0.653504  |
| 29 | 6  | 0 | -6.279701 | 0.718991  | 3.017849  |
| 30 | 1  | 0 | -6.908813 | 0.282505  | 3.796487  |
| 31 | 6  | 0 | -6.767307 | 1.780299  | 2.238669  |
| 32 | 1  | 0 | -7.771954 | 2.170288  | 2.408062  |
| 33 | 6  | 0 | -0.339601 | 0.080545  | -2.526400 |
| 34 | 6  | 0 | 0.719044  | -0.804461 | -2.772251 |
| 35 | 1  | 0 | 1.713911  | -0.590583 | -2.377331 |
| 36 | 6  | 0 | 0.508724  | -1.964319 | -3.507334 |
| 37 | 1  | 0 | 1.339508  | -2.647892 | -3.691786 |
| 38 | 6  | 0 | -1.611703 | -0.216097 | -3.024150 |
| 39 | 1  | 0 | -2.442478 | 0.464901  | -2.830751 |
| 40 | 6  | 0 | -1.818261 | -1.381868 | -3.758007 |
| 41 | 1  | 0 | -2.814008 | -1.605741 | -4.145329 |
| 42 | 6  | 0 | -0.763536 | -2.258276 | -3.996464 |
| 43 | 1  | 0 | -0.931846 | -3.175373 | -4.564039 |
| 44 | 6  | 0 | -1.640853 | 2.351002  | -1.203837 |
| 45 | 6  | 0 | -2.030662 | 3.419166  | -2.020015 |
| 46 | 1  | 0 | -1.347734 | 3.800904  | -2.781978 |
| 47 | 15 | 0 | 1.898632  | -0.113991 | 1.332131  |
| 48 | 6  | 0 | 3.862645  | 0.654676  | -0.500487 |
| 49 | 1  | 0 | 3.458545  | -0.120647 | -1.153169 |
| 50 | 6  | 0 | 3.347951  | 0.830271  | 0.789592  |
| 51 | 6  | 0 | 4.900643  | 1.457820  | -0.956060 |
| 52 | 1  | 0 | 5.294370  | 1.313569  | -1.963450 |
| 53 | 6  | 0 | 4.919411  | 2.631384  | 1.150034  |
| 54 | 1  | 0 | 5.333914  | 3.403926  | 1.800330  |
| 55 | 6  | 0 | 5.431174  | 2.446960  | -0.130979 |
| 56 | 1  | 0 | 6.247376  | 3.076892  | -0.489450 |
| 57 | 6  | 0 | 3.878891  | 1.829827  | 1.611108  |
| 58 | 1  | 0 | 3.485253  | 1.981309  | 2.617831  |

| 59 | 7 | 0 | -0.266206 | -1.822039 | 0.342917  |
|----|---|---|-----------|-----------|-----------|
| 60 | 6 | 0 | 0.944941  | -2.493683 | 0.280701  |
| 61 | 6 | 0 | -1.348361 | -2.389438 | -0.097251 |
| 62 | 1 | 0 | -2.271612 | -1.803273 | -0.048235 |
| 63 | 6 | 0 | -1.383864 | -3.705926 | -0.645649 |
| 64 | 6 | 0 | 1.032475  | -3.805526 | -0.235766 |
| 65 | 6 | 0 | -0.178624 | -4.438891 | -0.726226 |
| 66 | 6 | 0 | 2.298550  | -4.424329 | -0.276212 |
| 67 | 1 | 0 | 2.390797  | -5.438822 | -0.662587 |
| 68 | 6 | 0 | -2.593348 | -4.251223 | -1.123321 |
| 69 | 1 | 0 | -3.508592 | -3.660103 | -1.049705 |
| 70 | 6 | 0 | 3.430069  | -3.766863 | 0.157194  |
| 71 | 1 | 0 | 4.400391  | -4.263644 | 0.112026  |
| 72 | 6 | 0 | -0.221022 | -5.727052 | -1.294063 |
| 73 | 1 | 0 | 0.685861  | -6.325348 | -1.373515 |
| 74 | 6 | 0 | -2.607920 | -5.510994 | -1.676254 |
| 75 | 1 | 0 | -3.539137 | -5.941043 | -2.048162 |
| 76 | 6 | 0 | -1.411847 | -6.247622 | -1.758603 |
| 77 | 1 | 0 | -1.425751 | -7.247819 | -2.195901 |
| 78 | 6 | 0 | 1.942011  | -0.190040 | 3.145775  |
| 79 | 6 | 0 | 0.817378  | 0.245813  | 3.852812  |
| 80 | 1 | 0 | -0.050381 | 0.643604  | 3.319020  |
| 81 | 6 | 0 | 0.797193  | 0.180899  | 5.243811  |
| 82 | 1 | 0 | -0.083105 | 0.524127  | 5.789985  |
| 83 | 6 | 0 | 3.047956  | -0.692028 | 3.842034  |
| 84 | 1 | 0 | 3.933369  | -1.032459 | 3.301510  |
| 85 | 6 | 0 | 3.024282  | -0.754113 | 5.229384  |
| 86 | 1 | 0 | 3.888032  | -1.144973 | 5.770255  |
| 87 | 6 | 0 | 1.898996  | -0.318901 | 5.930210  |
| 88 | 1 | 0 | 1.884533  | -0.369898 | 7.020632  |
| 89 | 6 | 0 | 2.115936  | -1.819038 | 0.717147  |
| 90 | 6 | 0 | 3.341059  | -2.456346 | 0.648596  |
| 91 | 1 | 0 | 4.247967  | -1.935629 | 0.961496  |
|    |   |   |           |           |           |

## $2^{+}(S_{0})$

| HF = -4435.4439075 hartrees                  |              |
|----------------------------------------------|--------------|
| Zero-point correction=                       | 0.781268     |
| (Hartree/Particle)                           |              |
| Thermal correction to Gibbs Free Energy=     | 0.693458     |
| Sum of electronic and zero-point Energies=   | -4434.662640 |
| Sum of electronic and thermal Free Energies= | -4434.750450 |

### Standard orientation:

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Ζ         |
| 1      | 29     | 0      | 0.000000                | 0.000005  | 0.274723  |
| 2      | 15     | 0      | 1.672241                | -1.318644 | 0.964243  |
| 3      | 15     | 0      | -1.672249               | 1.318655  | 0.964222  |
| 4      | 7      | 0      | -1.440128               | -0.928098 | -0.943276 |
| 5      | 7      | 0      | 1.440141                | 0.928096  | -0.943273 |
| 6      | 6      | 0      | -2.191360               | 1.727176  | 2.658853  |
| 7      | 6      | 0      | 2.771433                | 0.663072  | -0.661150 |
| 8      | 6      | 0      | -3.079772               | 0.378415  | 0.256009  |

| 9        | 6      | 0 | 3.079772  | -0.378410              | 0.256036  |
|----------|--------|---|-----------|------------------------|-----------|
| 10       | 6      | 0 | 3.816955  | 1.402369               | -1.256022 |
| 11       | 6      | 0 | -1.667104 | 2.900809               | 0.050649  |
| 12       | 6      | 0 | 1.135732  | 1.862882               | -1.789018 |
| 13       | 1      | 0 | 0.073274  | 2.043946               | -1.978902 |
| 14       | 6      | 0 | -2.771423 | -0.663073              | -0.661166 |
| 15       | 6      | 0 | 2.100996  | 2.672912               | -2.462910 |
| 16       | 6      | 0 | 3.471055  | 2.453423               | -2.196971 |
| 17       | 6      | 0 | -1.135710 | -1.862896              | -1.789004 |
| 18       | 1      | 0 | -0.073249 | -2.043966              | -1.978870 |
| 19       | 6      | 0 | -0.677969 | 3.835487               | 0.388369  |
| 20       | 1      | 0 | -0.011608 | 3.641436               | 1.232935  |
| 21       | 6      | 0 | 2.191339  | -1.727156              | 2.658880  |
| 22       | 6      | 0 | 5.454861  | 0.098894               | 0.005763  |
| 23       | 6      | 0 | 5.146814  | 1.093529               | -0.902496 |
| 24       | 1      | 0 | 5.963433  | 1.658618               | -1.351808 |
| 25       | 6      | 0 | 2.634993  | 4.466242               | -3.987173 |
| 26       | 1      | 0 | 2.328273  | 5.250683               | -4.680917 |
| 27       | 6      | 0 | -2.891999 | 2.891393               | 2.987205  |
| 28       | 1      | 0 | -3.133584 | 3.622252               | 2.212719  |
| 29       | 6      | 0 | -2.100966 | -2.672939              | -2.462890 |
| 30       | 6      | 0 | 4.001923  | 4.250551               | -3.731396 |
| 31       | 1      | 0 | 4.747474  | 4.871212               | -4.232158 |
| 32       | 6      | 0 | -2.961774 | 2.202735               | 5.299892  |
| 33       | 1      | 0 | -3.262146 | 2.390848               | 6.332531  |
| 34       | 6      | 0 | -4.395346 | 0.634864               | 0.579882  |
| 35       | 1      | 0 | -4.628219 | 1.423036               | 1.299964  |
| 36       | 6      | 0 | 4.414456  | 3.268000               | -2.855412 |
| 37       | 1      | 0 | 5.480177  | 3.129238               | -2.677642 |
| 38       | 6      | 0 | 1.667097  | -2.900801              | 0.050675  |
| 39       | 6      | 0 | -3.816938 | -1.402380              | -1.256038 |
| 40       | 6      | 0 | -6.873722 | 0.211076               | 0.389917  |
| 41       | 1      | 0 | -/.11/513 | 1.264421               | 0.184313  |
| 42       | 1      | 0 | -7.032342 | 0.04/24/               | 1.466831  |
| 43       | l<br>C | 0 | -/.588/68 | -0.416673              | -0.157621 |
| 44       | 6      | 0 | 1.693946  | 3.684530               | -3.35/654 |
| 45       |        | 0 | 0.62/012  | 3.83//98               | -3.532524 |
| 40       | 0      | 0 | -1.869388 | 0.808/51               | 3.664599  |
| 4 /      |        | 0 | -1.304390 | -0.092240              | 3.412139  |
| 40       | 0      | 0 | -1.695906 | -3.004373              | -3.537010 |
| 49<br>50 | I<br>6 | 0 | -5.454858 | -0.000000              | -3.332400 |
| 51       | 6      | 0 | -3.434030 | -0.634859              | 0.003721  |
| 52       | 1      | 0 | 4.595545  | -0.034039<br>-1.423027 | 1 300011  |
| 53       | I<br>6 | 0 | -2 250711 | 1 0/2673               | 1.300011  |
| 57       | 1      | 0 | -2 007700 | 0 320345               | 5 757559  |
| 55       | 6      | 0 | -4 001878 | -4 250604              | -3 731367 |
| 56       | 1      | 0 | -4 747423 | -4 871276              | -4 232125 |
| 57       | ÷      | 0 | -3 273716 | 3 126565               | 4 305451  |
| 58       | 1      | 0 | -3 817989 | 4 038734               | 4 557616  |
| 59       | ÷<br>6 | Õ | -2.634946 | -4.466299              | -3.987125 |
| 60       | 1      | Õ | -2.328218 | -5.250753              | -4.680851 |
| 61       | ÷<br>6 | 0 | -3 471028 | -2.453447              | -2 196970 |
| 62       | 6      | 0 | -2.492829 | 3.151768               | -1.047497 |
| 63       | 1      | 0 | -3.263673 | 2.433000               | -1.329182 |
| 64       | ÷<br>6 | 0 | 1.869360  | -0.808724              | 3.664618  |
| 65       | 1      | Ũ | 1.304365  | 0.092266               | 3.412148  |

| 66 | 6 | 0 | -0.529808 | 5.003553  | -0.348569 |
|----|---|---|-----------|-----------|-----------|
| 67 | 1 | 0 | 0.241326  | 5.725395  | -0.072940 |
| 68 | 6 | 0 | 6.873722  | -0.211080 | 0.389971  |
| 69 | 1 | 0 | 7.588774  | 0.416659  | -0.157569 |
| 70 | 1 | 0 | 7.117510  | -1.264429 | 0.184382  |
| 71 | 1 | 0 | 7.032335  | -0.047239 | 1.466885  |
| 72 | 6 | 0 | 2.259672  | -1.042640 | 4.978683  |
| 73 | 1 | 0 | 2.007655  | -0.320306 | 5.757576  |
| 74 | 6 | 0 | 2.891974  | -2.891372 | 2.987244  |
| 75 | 1 | 0 | 3.133564  | -3.622235 | 2.212764  |
| 76 | 6 | 0 | -5.146801 | -1.093541 | -0.902526 |
| 77 | 1 | 0 | -5.963415 | -1.658638 | -1.351837 |
| 78 | 6 | 0 | -4.414421 | -3.268038 | -2.855405 |
| 79 | 1 | 0 | -5.480144 | -3.129276 | -2.677646 |
| 80 | 6 | 0 | 0.677946  | -3.835466 | 0.388381  |
| 81 | 1 | 0 | 0.011576  | -3.641408 | 1.232938  |
| 82 | 6 | 0 | 2.961731  | -2.202701 | 5.299928  |
| 83 | 1 | 0 | 3.262095  | -2.390809 | 6.332570  |
| 84 | 6 | 0 | -1.356935 | 5.246943  | -1.445349 |
| 85 | 1 | 0 | -1.237486 | 6.162658  | -2.027716 |
| 86 | 6 | 0 | 3.273679  | -3.126537 | 4.305495  |
| 87 | 1 | 0 | 3.817949  | -4.038705 | 4.557669  |
| 88 | 6 | 0 | 2.335025  | -4.320522 | -1.792527 |
| 89 | 1 | 0 | 2.987963  | -4.507594 | -2.647442 |
| 90 | 6 | 0 | -2.335028 | 4.320525  | -1.792558 |
| 91 | 1 | 0 | -2.987959 | 4.507592  | -2.647479 |
| 92 | 6 | 0 | 1.356916  | -5.246928 | -1.445331 |
| 93 | 1 | 0 | 1.237462  | -6.162640 | -2.027703 |
| 94 | 6 | 0 | 2.492831  | -3.151767 | -1.047462 |
| 95 | 1 | 0 | 3.263684  | -2.433006 | -1.329139 |
| 96 | 6 | 0 | 0.529779  | -5.003529 | -0.348562 |
| 97 | 1 | 0 | -0.241368 | -5.725362 | -0.072943 |
|    |   |   |           |           |           |

## $2^{+}(T_{1})$

| HF = -4435.3578597 hartrees                  |              |
|----------------------------------------------|--------------|
| Zero-point correction=                       | 0.778441     |
| (Hartree/Particle)                           |              |
| Thermal correction to Gibbs Free Energy=     | 0.690788     |
| Sum of electronic and zero-point Energies=   | -4434.579419 |
| Sum of electronic and thermal Energies=      | -4434.531124 |
| Sum of electronic and thermal Enthalpies=    | -4434.530180 |
| Sum of electronic and thermal Free Energies= | -4434.667072 |

| <u> </u> |                                                              |
|----------|--------------------------------------------------------------|
| Standard | $\alpha r_1 \alpha n_{\pm} \gamma \pm \gamma \alpha n_{\pm}$ |
| olandatu | OT TEHLOLTON.                                                |
|          |                                                              |

| Center | Atomic<br>Number | Atomic | Coord     | dinates (Ang:<br>v | stroms)   |
|--------|------------------|--------|-----------|--------------------|-----------|
|        |                  |        |           |                    |           |
| 1      | 29               | 0      | -0.269426 | 0.067860           | 0.677863  |
| 2      | 15               | 0      | -0.807926 | 1.354251           | -1.150476 |
| 3      | 15               | 0      | 1.859994  | 0.553026           | 1.302636  |
| 4      | 7                | 0      | 0.520516  | -1.819518          | 0.220069  |
| 5      | 7                | 0      | -2.167004 | -0.182424          | 0.825046  |
| 6      | 6                | 0      | 2.742121  | 2.058298           | 0.808564  |
| 7      | 6                | 0      | -3.044770 | 0.616414           | 0.146077  |

| 8  | 6 | 0 | 2.711978  | -0.848075 | 0.500226  |
|----|---|---|-----------|-----------|-----------|
| 9  | 6 | 0 | -2.557962 | 1.506350  | -0.840878 |
| 10 | 6 | 0 | -4.447900 | 0.582923  | 0.396960  |
| 11 | 6 | 0 | 2.079184  | 0.356008  | 3.094559  |
| 12 | 6 | 0 | -2.636378 | -1.092608 | 1.745844  |
| 13 | 1 | 0 | -1.895936 | -1.734387 | 2.228083  |
| 14 | 6 | 0 | 1.891014  | -1.911247 | 0.039609  |
| 15 | 6 | 0 | -3.998115 | -1.192826 | 2.073379  |
| 16 | 6 | 0 | -4.949897 | -0.357855 | 1.409195  |
| 17 | 6 | 0 | -0.259009 | -2.751083 | -0.239545 |
| 18 | 1 | 0 | -1.335389 | -2.616185 | -0.093273 |
| 19 | 6 | 0 | 0.937495  | 0.218495  | 3.889541  |
| 20 | 1 | 0 | -0.057529 | 0.255137  | 3.437113  |
| 21 | 6 | 0 | -0.102176 | 2.923635  | -1.687900 |
| 22 | 6 | 0 | -4.775340 | 2.362291  | -1.282513 |
| 23 | 6 | 0 | -5.259811 | 1.456245  | -0.320436 |
| 24 | 1 | 0 | -6.333245 | 1.452850  | -0.125040 |
| 25 | 6 | 0 | -5.802653 | -2.211032 | 3.350965  |
| 26 | 1 | 0 | -6.141397 | -2.926677 | 4.103113  |
| 27 | 6 | 0 | 2.876239  | 3.118664  | 1.710441  |
| 28 | 1 | 0 | 2.535501  | 3.009963  | 2.741681  |
| 29 | 6 | 0 | 0.215265  | -3.906953 | -0.928532 |
| 30 | 6 | 0 | -6.735667 | -1.388450 | 2.698588  |
| 31 | 1 | 0 | -7.796906 | -1.461809 | 2.940478  |
| 32 | 6 | 0 | 3.893465  | 4.466777  | -0.013820 |
| 33 | 1 | 0 | 4.345871  | 5.407074  | -0.334266 |
| 34 | 6 | 0 | 4.078005  | -0.904631 | 0.314452  |
| 35 | 1 | 0 | 4.705911  | -0.075187 | 0.648443  |
| 36 | 6 | 0 | -6.302178 | -0.479251 | 1.742493  |
| 37 | 1 | 0 | -7.042247 | 0.148814  | 1.245597  |
| 38 | 6 | 0 | -0.543342 | 0.095549  | -2.437210 |
| 39 | 6 | 0 | 2.478043  | -3.010823 | -0.620151 |
| 40 | 6 | 0 | 6.180339  | -2.040187 | -0.490663 |
| 41 | 1 | 0 | 6.684799  | -2.073413 | 0.487250  |
| 42 | 1 | 0 | 6.540445  | -1.139466 | -1.010199 |
| 43 | 1 | 0 | 6.502887  | -2.917770 | -1.065689 |
| 44 | 6 | 0 | -4.462561 | -2.117769 | 3.047582  |
| 45 | 1 | 0 | -3.735399 | -2.755675 | 3.555655  |
| 46 | 6 | 0 | 3.179999  | 2.218961  | -0.511489 |
| 47 | 1 | 0 | 3.080751  | 1.401349  | -1.227019 |
| 48 | 6 | 0 | -0.690286 | -4.869444 | -1.420911 |
| 49 | 1 | 0 | -1.759591 | -4.729468 | -1.249083 |
| 50 | 6 | 0 | 4.688071  | -2.005902 | -0.321353 |
| 51 | 6 | 0 | -3.412776 | 2.373672  | -1.535029 |
| 52 | 1 | 0 | -2.999577 | 3.058662  | -2.279359 |
| 53 | 6 | 0 | 3.754846  | 3.416444  | -0.918380 |
| 54 | 1 | 0 | 4.091487  | 3.532107  | -1.949873 |
| 55 | 6 | 0 | 1.160830  | -6.115891 | -2.318022 |
| 56 | 1 | 0 | 1.530171  | -6.986128 | -2.864014 |
| 57 | 6 | 0 | 3.453621  | 4.316305  | 1.297936  |
| 58 | 1 | 0 | 3.561935  | 5.136288  | 2.010275  |
| 59 | 6 | 0 | -0.222762 | -5.964078 | -2.110689 |
| 60 | 1 | 0 | -0.916577 | -6.713391 | -2.494899 |
| 61 | 6 | 0 | 1.606015  | -4.051831 | -1.133850 |
| 62 | 6 | 0 | 3.346714  | 0.312106  | 3.687230  |
| 63 | 1 | 0 | 4.245534  | 0.421483  | 3.077161  |
| 64 | 6 | 0 | 0.029989  | 3.934413  | -0.726851 |

| 65 | 1 | 0 | -0.284486 | 3.753054  | 0.303622  |
|----|---|---|-----------|-----------|-----------|
| 66 | 6 | 0 | 1.060436  | 0.038607  | 5.265112  |
| 67 | 1 | 0 | 0.165228  | -0.066717 | 5.880378  |
| 68 | 6 | 0 | -5.723454 | 3.281379  | -2.001995 |
| 69 | 1 | 0 | -6.502496 | 2.715498  | -2.535918 |
| 70 | 1 | 0 | -5.197857 | 3.905797  | -2.737183 |
| 71 | 1 | 0 | -6.238655 | 3.953504  | -1.298077 |
| 72 | 6 | 0 | 0.561436  | 5.166558  | -1.081999 |
| 73 | 1 | 0 | 0.661625  | 5.951216  | -0.330328 |
| 74 | 6 | 0 | 0.311183  | 3.156154  | -3.002887 |
| 75 | 1 | 0 | 0.207362  | 2.375458  | -3.758166 |
| 76 | 6 | 0 | 3.879152  | -3.030483 | -0.776340 |
| 77 | 1 | 0 | 4.347279  | -3.877142 | -1.278343 |
| 78 | 6 | 0 | 2.058792  | -5.183092 | -1.840805 |
| 79 | 1 | 0 | 3.123033  | -5.332196 | -2.019027 |
| 80 | 6 | 0 | 0.763351  | -0.253269 | -2.804941 |
| 81 | 1 | 0 | 1.610978  | 0.315728  | -2.418618 |
| 82 | 6 | 0 | 0.973699  | 5.395619  | -2.394119 |
| 83 | 1 | 0 | 1.393361  | 6.364446  | -2.672028 |
| 84 | 6 | 0 | 2.322499  | -0.004060 | 5.848374  |
| 85 | 1 | 0 | 2.420104  | -0.144498 | 6.926608  |
| 86 | 6 | 0 | 0.849287  | 4.392278  | -3.350978 |
| 87 | 1 | 0 | 1.164811  | 4.574182  | -4.380066 |
| 88 | 6 | 0 | -1.383183 | -1.738176 | -3.769239 |
| 89 | 1 | 0 | -2.226681 | -2.318928 | -4.147262 |
| 90 | 6 | 0 | 3.465146  | 0.133786  | 5.059554  |
| 91 | 1 | 0 | 4.454396  | 0.101047  | 5.519693  |
| 92 | 6 | 0 | -0.083021 | -2.081266 | -4.128625 |
| 93 | 1 | 0 | 0.096327  | -2.936935 | -4.782227 |
| 94 | 6 | 0 | -1.616844 | -0.655257 | -2.924873 |
| 95 | 1 | 0 | -2.636533 | -0.394135 | -2.636019 |
| 96 | 6 | 0 | 0.991136  | -1.332284 | -3.649679 |
| 97 | 1 | 0 | 2.012884  | -1.597681 | -3.927283 |
|    |   |   |           |           |           |

# $3^{+}(S_{0})$

| HF = -4513.9891121 hartrees                  |              |
|----------------------------------------------|--------------|
| Zero-point correction=                       | 0.837257     |
| (Hartree/Particle)                           |              |
| Thermal correction to Gibbs Free Energy=     | 0.747345     |
| Sum of electronic and zero-point Energies=   | -4513.151856 |
| Sum of electronic and thermal Free Energies= | -4513.241767 |

### Standard orientation:

| Center Atomic Atomic |        |      | Coord     | dinates (Ang | stroms)   |
|----------------------|--------|------|-----------|--------------|-----------|
| Number               | Number | Туре | X         | Y            | Z         |
| 1                    | 29     | 0    | 0.063161  | 0.159798     | -0.055000 |
| 2                    | 15     | 0    | -1.350116 | 1.713916     | 0.734603  |
| 3                    | 15     | 0    | 1.186358  | -1.474578    | 1.011409  |
| 4                    | 7      | 0    | -1.588033 | -0.524066    | -1.242595 |
| 5                    | 7      | 0    | 1.896672  | 0.600474     | -1.026300 |
| 6                    | 6      | 0    | -2.910801 | 0.935506     | 0.169101  |
| 7                    | 6      | 0    | -2.832535 | -0.133105    | -0.765753 |
| 8                    | 6      | 0    | 3.031392  | 0.032123     | -0.461144 |

| 9  | 6 | 0 | 2.882187  | -0.982275 | 0.524941  |
|----|---|---|-----------|-----------|-----------|
| 10 | 6 | 0 | 0.900058  | -3.120235 | 0.275631  |
| 11 | 6 | 0 | -1.666755 | 2.044586  | 2.499334  |
| 12 | 6 | 0 | 4.328005  | 0.432589  | -0.843001 |
| 13 | 6 | 0 | -1.298937 | 3.351930  | -0.066859 |
| 14 | 6 | 0 | -4.021142 | -0.761961 | -1.189660 |
| 15 | 6 | 0 | 1.882806  | -3.868755 | -0.375169 |
| 16 | 6 | 0 | 1.334629  | -1.763783 | 2.805480  |
| 17 | 6 | 0 | -4.139085 | 1.330640  | 0.659716  |
| 18 | 6 | 0 | -2.634890 | -2.186025 | -2.634541 |
| 19 | 6 | 0 | 1.993569  | 1.497775  | -1.968885 |
| 20 | 6 | 0 | -2.239116 | 3.775233  | -1.007870 |
| 21 | 6 | 0 | 4.000973  | -1.536416 | 1.114620  |
| 22 | 6 | 0 | -1.481565 | -1.463821 | -2.141269 |
| 23 | 6 | 0 | 3.274970  | 1.984229  | -2.432345 |
| 24 | 6 | 0 | -2.042581 | 3.294919  | 2.996812  |
| 25 | 6 | 0 | 3.364480  | 2.982559  | -3.427744 |
| 26 | 6 | 0 | 4.590165  | 3.448238  | -3.846721 |
| 27 | 6 | 0 | 5.698798  | 1.951942  | -2.307978 |
| 28 | 6 | 0 | 5.303495  | -1.142669 | 0.750782  |
| 29 | 6 | 0 | 5.439927  | -0.172317 | -0.222923 |
| 30 | 6 | 0 | -2.150242 | 2.381359  | 5.230017  |
| 31 | 6 | 0 | 1.548959  | -5.066037 | -1.005749 |
| 32 | 6 | 0 | -3.916635 | -1.847282 | -2.148003 |
| 33 | 6 | 0 | 5.764784  | 2.925970  | -3.280756 |
| 34 | 6 | 0 | -5.252791 | -0.317879 | -0.667857 |
| 35 | 6 | 0 | -5.335961 | 0.712443  | 0.248634  |
| 36 | 6 | 0 | -5.030881 | -2.574202 | -2.614915 |
| 37 | 6 | 0 | 4.455678  | 1.459166  | -1.861408 |
| 38 | 6 | 0 | -2.281185 | 3.459919  | 4.359519  |
| 39 | 6 | 0 | -1.530007 | 0.966105  | 3.380469  |
| 40 | 6 | 0 | 1.465901  | -0.638130 | 3.628098  |
| 41 | 6 | 0 | -6.651547 | 1.173929  | 0.808189  |
| 42 | 6 | 0 | -0.184572 | 4.160113  | 0.197722  |
| 43 | 6 | 0 | -0.420721 | -3.589604 | 0.288264  |
| 44 | 6 | 0 | -1.775423 | 1.132131  | 4.738246  |
| 45 | 6 | 0 | -4.876502 | -3.594622 | -3.528343 |
| 46 | 6 | 0 | -3.601291 | -3.929958 | -4.012399 |
| 47 | 6 | 0 | 0.732266  | 2.022281  | -2.585505 |
| 48 | 6 | 0 | 1.305596  | -3.035467 | 3.382176  |
| 49 | 6 | 0 | -2.498302 | -3.234408 | -3.571251 |
| 50 | 6 | 0 | -0.122487 | -1.789970 | -2.680136 |
| 51 | 6 | 0 | -0.022939 | 5.374550  | -0.457547 |
| 52 | 6 | 0 | -2.067943 | 4.987807  | -1.674220 |
| 53 | 6 | 0 | 6.493537  | -1.770498 | 1.419052  |
| 54 | 6 | 0 | -0.963746 | 5.788717  | -1.400916 |
| 55 | 6 | 0 | -0.750331 | -4.788479 | -0.332550 |
| 56 | 6 | 0 | 0.235263  | -5.526668 | -0.987065 |
| 57 | 6 | 0 | 1.578251  | -0.783902 | 5.005159  |
| 58 | 6 | 0 | 1.409949  | -3.177640 | 4.764700  |
| 59 | 6 | 0 | 1.548029  | -2.055764 | 5.576291  |
| 60 | 1 | 0 | -1.201948 | -3.000428 | 0.775615  |
| 61 | 1 | 0 | -1.783056 | -5.141976 | -0.318738 |
| 62 | 1 | 0 | -0.022994 | -6.463915 | -1.483857 |
| 63 | 1 | 0 | 2.913059  | -3.511733 | -0.405473 |
| 64 | 1 | 0 | 2.323203  | -5.642120 | -1.516304 |
| 65 | 1 | 0 | 0.636425  | -1.174923 | -2.188769 |

| 66  | 1 | 0 | -0.087632 | -1.598297 | -3.763436 |
|-----|---|---|-----------|-----------|-----------|
| 67  | 1 | 0 | 0.127124  | -2.847642 | -2.521644 |
| 68  | 1 | 0 | -3.486389 | -4.739585 | -4.734923 |
| 69  | 1 | 0 | -1.511144 | -3.502047 | -3.945170 |
| 70  | 1 | 0 | -6.029925 | -2.335262 | -2.253617 |
| 71  | 1 | 0 | -5.751905 | -4.145844 | -3.876838 |
| 72  | 1 | 0 | -6.175380 | -0.798544 | -0.992055 |
| 73  | 1 | 0 | -4.187203 | 2.140169  | 1.392139  |
| 74  | 1 | 0 | -6.817769 | 2.241289  | 0.597343  |
| 75  | 1 | 0 | -6.676397 | 1.053302  | 1.902008  |
| 76  | 1 | 0 | -7.492672 | 0.609287  | 0.385114  |
| 77  | 1 | 0 | -3.108214 | 3.154711  | -1.230898 |
| 78  | 1 | 0 | -2.807451 | 5.308405  | -2.410652 |
| 79  | 1 | 0 | 0.844976  | 5.999381  | -0.237718 |
| 80  | 1 | 0 | -0.834461 | 6.739542  | -1.921579 |
| 81  | 1 | 0 | 0.567402  | 3.831665  | 0.920322  |
| 82  | 1 | 0 | -2.147037 | 4.145889  | 2.321394  |
| 83  | 1 | 0 | -2.337567 | 2.515301  | 6.297244  |
| 84  | 1 | 0 | -2.572516 | 4.439907  | 4.742526  |
| 85  | 1 | 0 | -1.222491 | -0.009455 | 2.998478  |
| 86  | 1 | 0 | -1.661842 | 0.283743  | 5.415930  |
| 87  | 1 | 0 | -0.135939 | 1.497609  | -2.174788 |
| 88  | 1 | 0 | 0.747172  | 1.880123  | -3.675959 |
| 89  | 1 | 0 | 0.611328  | 3.097856  | -2.391577 |
| 90  | 1 | 0 | 2.456335  | 3.393983  | -3.866355 |
| 91  | 1 | 0 | 4.650146  | 4.220815  | -4.614957 |
| 92  | 1 | 0 | 6.624375  | 1.565446  | -1.884219 |
| 93  | 1 | 0 | 6.737412  | 3.294286  | -3.612308 |
| 94  | 1 | 0 | 3.875383  | -2.295795 | 1.890602  |
| 95  | 1 | 0 | 6.445034  | 0.133550  | -0.511740 |
| 96  | 1 | 0 | 6.494740  | -2.862339 | 1.280411  |
| 97  | 1 | 0 | 6.478189  | -1.582879 | 2.503572  |
| 98  | 1 | 0 | 7.437326  | -1.376584 | 1.019883  |
| 99  | 1 | 0 | 1.473096  | 0.361074  | 3.185633  |
| 100 | 1 | 0 | 1.680472  | 0.100314  | 5.637296  |
| 101 | 1 | 0 | 1.200128  | -3.920841 | 2.752961  |
| 102 | 1 | 0 | 1.630920  | -2.171101 | 6.658769  |
| 103 | 1 | 0 | 1.385357  | -4.174751 | 5.208596  |
|     |   |   |           |           |           |

## $3^{+}(T_{1})$

| HF = -4513.8961241 hartrees                  |              |
|----------------------------------------------|--------------|
| Zero-point correction=                       | 0.834299     |
| (Hartree/Particle)                           |              |
| Thermal correction to Gibbs Free Energy=     | 0.743587     |
| Sum of electronic and zero-point Energies=   | -4513.061825 |
| Sum of electronic and thermal Free Energies= | -4513.152537 |

|        |        | Standard | orientation: |               |           |
|--------|--------|----------|--------------|---------------|-----------|
| Center | Atomic | Atomic   | Coord        | linates (Angs | stroms)   |
| Number | Number | Туре     | Х            | Y             | Z         |
| 1      | 29     | 0        | 0.293930     | 0.118028      | 0.446381  |
| 2      | 15     | 0        | -1.374506    | -1.158246     | 1.286455  |
| 3      | 15     | 0        | 0.944130     | -0.809408     | -1.543839 |

| 4  | 7 | 0 | -1.274557 | 1.623177  | 0.223877  |
|----|---|---|-----------|-----------|-----------|
| 5  | 7 | 0 | 2.156683  | 0.640063  | 0.651299  |
| 6  | 6 | 0 | -2.816715 | -0.120603 | 0.915680  |
| 7  | 6 | 0 | -2.581559 | 1.186459  | 0.408623  |
| 8  | 6 | 0 | 3.096217  | 0.161155  | -0.215311 |
| 9  | 6 | 0 | 2.699460  | -0.611288 | -1.336048 |
| 10 | 6 | 0 | 0.304013  | 0.385761  | -2.752117 |
| 11 | 6 | 0 | -1.830416 | -2.837508 | 0.774103  |
| 12 | 6 | 0 | 4.492011  | 0.396316  | -0.027353 |
| 13 | 6 | 0 | -1.135807 | -1.189455 | 3.088203  |
| 14 | 6 | 0 | -3.691361 | 1.991024  | 0.078541  |
| 15 | 6 | 0 | 1.167475  | 1.220502  | -3.466381 |
| 16 | 6 | 0 | 0.591147  | -2.478102 | -2.132375 |
| 17 | 6 | 0 | -4.107797 | -0.587407 | 1.075457  |
| 18 | 6 | 0 | -2.100862 | 3.712989  | -0.647844 |
| 19 | 6 | 0 | 2.526623  | 1.403423  | 1.747991  |
| 20 | 6 | 0 | -2.187290 | -1.054456 | 3.999950  |
| 21 | 6 | 0 | 3.639657  | -1.166374 | -2.222621 |
| 22 | 6 | 0 | -1.033733 | 2.806087  | -0.278987 |
| 23 | 6 | 0 | 3.885014  | 1.668596  | 2.018964  |
| 24 | 6 | 0 | -1.587516 | -3.937191 | 1.600346  |
| 25 | 6 | 0 | 4.284715  | 2.421780  | 3.159580  |
| 26 | 6 | 0 | 5.613622  | 2.694100  | 3.404695  |
| 27 | 6 | 0 | 6.241377  | 1.484116  | 1.417052  |
| 28 | 6 | 0 | 4.991328  | -0.942075 | -2.041379 |
| 29 | 6 | 0 | 5.383570  | -0.157017 | -0.938409 |
| 30 | 6 | 0 | -2.444790 | -5.413284 | -0.106298 |
| 31 | 6 | 0 | 0.647245  | 2.206959  | -4.301616 |
| 32 | 6 | 0 | -3.441995 | 3.310779  | -0.470348 |
| 33 | 6 | 0 | 6.606575  | 2.227981  | 2.531456  |
| 34 | 6 | 0 | -4.990598 | 1.482285  | 0.276160  |
| 35 | 6 | 0 | -5.223841 | 0.211940  | 0.767108  |
| 36 | 6 | 0 | -4.471853 | 4.198810  | -0.840938 |
| 37 | 6 | 0 | 4.904489  | 1.188090  | 1.137759  |
| 38 | 6 | 0 | -1.895083 | -5.221571 | 1.156972  |
| 39 | 6 | 0 | -2.372963 | -3.037116 | -0.501747 |
| 40 | 6 | 0 | 0.974532  | -3.544692 | -1.307708 |
| 41 | 6 | 0 | -6.613654 | -0.321550 | 0.967775  |
| 42 | 6 | 0 | 0.173786  | -1.348293 | 3.558914  |
| 43 | 6 | 0 | -1.082331 | 0.553251  | -2.877912 |
| 44 | 6 | 0 | -2.683948 | -4.318335 | -0.935524 |
| 45 | 6 | 0 | -4.178704 | 5.437912  | -1.368440 |
| 46 | 6 | 0 | -2.844361 | 5.837759  | -1.546508 |
| 47 | 6 | 0 | 1.434304  | 1.909915  | 2.639621  |
| 48 | 6 | 0 | -0.036250 | -2.735527 | -3.354335 |
| 49 | 6 | 0 | -1.822388 | 4.986957  | -1.191128 |
| 50 | 6 | 0 | 0.383395  | 3.231543  | -0.499000 |
| 51 | 6 | 0 | 0.424727  | -1.391694 | 4.926733  |
| 52 | 6 | 0 | -1.930193 | -1.090626 | 5.366243  |
| 53 | 6 | 0 | 6.026067  | -1.511126 | -2.971876 |
| 54 | 6 | 0 | -0.627061 | -1.262084 | 5.829965  |
| 55 | 6 | 0 | -1.596332 | 1.538261  | -3.710993 |
| 56 | 6 | 0 | -0.730182 | 2.369786  | -4.421547 |
| 57 | 6 | 0 | 0.741041  | -4.852384 | -1.708415 |
| 58 | 6 | 0 | -0.269365 | -4.050347 | -3.749456 |
| 59 | 6 | 0 | 0.118361  | -5.106472 | -2.930195 |
| 60 | 1 | 0 | -1.765985 | -0.079643 | -2.307134 |

| 61  | 1 | 0 | -2.676636 | 1.667032  | -3.799310 |
|-----|---|---|-----------|-----------|-----------|
| 62  | 1 | 0 | -1.133847 | 3.148368  | -5.071646 |
| 63  | 1 | 0 | 2.247327  | 1.102048  | -3.360654 |
| 64  | 1 | 0 | 1.325981  | 2.853770  | -4.860760 |
| 65  | 1 | 0 | 1.083800  | 2.437815  | -0.229014 |
| 66  | 1 | 0 | 0.618035  | 4.123626  | 0.100125  |
| 67  | 1 | 0 | 0.541017  | 3.488601  | -1.555593 |
| 68  | 1 | 0 | -2.619075 | 6.820618  | -1.963359 |
| 69  | 1 | 0 | -0.790594 | 5.304427  | -1.331241 |
| 70  | 1 | 0 | -5.514769 | 3.913858  | -0.712120 |
| 71  | 1 | 0 | -4.989921 | 6.112602  | -1.648200 |
| 72  | 1 | 0 | -5.849293 | 2.104337  | 0.026032  |
| 73  | 1 | 0 | -4.269836 | -1.606944 | 1.433827  |
| 74  | 1 | 0 | -6.802575 | -0.538045 | 2.030405  |
| 75  | 1 | 0 | -6.758839 | -1.262059 | 0.415240  |
| 76  | 1 | 0 | -7.374560 | 0.393573  | 0.629280  |
| 77  | 1 | 0 | -3.209244 | -0.911942 | 3.645904  |
| 78  | 1 | 0 | -2.752997 | -0.981921 | 6.075182  |
| 79  | 1 | 0 | 1.447628  | -1.516530 | 5.286476  |
| 80  | 1 | 0 | -0.430201 | -1.288372 | 6.903437  |
| 81  | 1 | 0 | 1.005704  | -1.427700 | 2.853919  |
| 82  | 1 | 0 | -1.165758 | -3.794289 | 2.596576  |
| 83  | 1 | 0 | -2.688547 | -6.420678 | -0.448949 |
| 84  | 1 | 0 | -1.709170 | -6.076373 | 1.809848  |
| 85  | 1 | 0 | -2.561499 | -2.186252 | -1.159376 |
| 86  | 1 | 0 | -3.107552 | -4.465080 | -1.930187 |
| 87  | 1 | 0 | 0.438325  | 1.681571  | 2.233426  |
| 88  | 1 | 0 | 1.483379  | 3.002727  | 2.775053  |
| 89  | 1 | 0 | 1.474902  | 1.461508  | 3.646896  |
| 90  | 1 | 0 | 3.528095  | 2.789381  | 3.852629  |
| 91  | 1 | 0 | 5.892664  | 3.275479  | 4.286076  |
| 92  | 1 | 0 | 7.025998  | 1.127421  | 0.749507  |
| 93  | 1 | 0 | 7.658249  | 2.444031  | 2.724841  |
| 94  | 1 | 0 | 3.294492  | -1.776950 | -3.060651 |
| 95  | 1 | 0 | 6.451904  | 0.007299  | -0.791949 |
| 96  | 1 | 0 | 5.563749  | -2.100542 | -3.775395 |
| 97  | 1 | 0 | 6.727942  | -2.167720 | -2.434392 |
| 98  | 1 | 0 | 6.625285  | -0.714693 | -3.440095 |
| 99  | 1 | 0 | 1.463827  | -3.346608 | -0.351122 |
| 100 | 1 | 0 | 1.042215  | -5.679551 | -1.063604 |
| 101 | 1 | 0 | -0.331268 | -1.911690 | -4.006006 |
| 102 | 1 | 0 | -0.063468 | -6.135878 | -3.245108 |
| 103 | 1 | 0 | -0.748883 | -4.249078 | -4.709807 |

## REFERENCES

1. Lee, C.-I.; Zhou, J.; Ozerov, O. V. Catalytic Dehydrogenative Borylation of Terminal Alkynes by a SiNN Pincer Complex of Iridium. *J. Am. Chem. Soc.* **2013**, *135*, 3560-3566.

2. Mandapati, P.; Giesbrecht, P. K.; Davis, R. L.; Herbert, D. E. Phenanthridine-Containing Pincer-like Amido Complexes of Nickel, Palladium, and Platinum. *Inorg. Chem.* **2017**, *56*, 3674-3685.

3. Mondal, R.; Giesbrecht, P. K.; Herbert, D. E. Nickel(II), Copper(I) and Zinc(II) Complexes Supported by a (4-Diphenylphosphino)phenanthridine Ligand. *Polyhedron* **2016**, *108*, 156-162.

4. Mondal, R.; Lozada, I. B.; Davis, R. L.; Williams, J. A. G.; Herbert, D. E. Site-Selective Benzannulation of N-Heterocycles in Bidentate Ligands Leads to Blue-Shifted Emission from [(PN)Cu]2(μ-X)2 Dimers. *Inorg. Chem.* **2018**, *57*, 4966-4978.

5. Bruker-AXS *APEX3 v2016.1-0*, Madison, Wisconsin, USA, 2016.

6. Sheldrick, G. M. A Short History of SHELX. *Acta Cryst.* **2008**, *A64*, 112-122.

7. Spek, A. L. Structure Validation in Chemical Crystallography. *Acta Cryst.* 2009, *D65*, 148-155.

8. Suzuki, T.; Yamaguchi, H.; Hashimoto, A.; Nozaki, K.; Doi, M.; Inazumi, N.; Ikeda, N.; Kawata, S.; Kojima, M.; Takagi, H. D. Orange and Yellow Crystals of Copper(I) Complexes Bearing 8-(Diphenylphosphino)quinoline: A Pair of Distortion Isomers of an Intrinsic Tetrahedral Complex. *Inorg. Chem.* **2011**, *50*, 3981-3987.

9. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16, Revision B.01*, Gaussian, Inc.: Wallingford CT, 2016.

10. Yanai, T.; Tew, D. P.; Handy, N. C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, *393*, 51-57.

11. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456-1465.

12. Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.

13. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241. 14. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Software News and Updates celib: a Library for Package-Independent Computational Chemistry Algorithms. *J. Comput. Chem.* **2008**, *29*, 839-845.

15. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: an Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. *J. Cheminf.* **2012**, *4*, 17.

16. Tenderholt, A. L. *QMForge: A Program to Analyze Quantum Chemistry Calculations*, version 2.4.

17. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580-592.

18. Reineke, M. H.; Sampson, M. D.; Rheingold, A. L.; Kubiak, C. P. Synthesis and Structural Studies of Nickel(0) Tetracarbene Complexes with the Introduction of a New Four-Coordinate Geometric Index, τδ. *Inorg. Chem.* **2015**, *54*, 3211-3217.