Supporting Information for

Synergistic Combination of Amorphous Indium Oxide with Tantalum Pentoxide for Efficient Electron Transport in Low-Power Electronics

Song Yi Park[†]a, Jungwoo Heo[†]b, Yung Jin Yoon^a, Jae Won Kim^a, Hyungsu Jang^a, Bright Walker^{*}c and Jin Young Kim^{*}a,^b

^aDepartment of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.

^bDepartment of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea. E-mail: jykim@unist.ac.kr

^cDepartment of Chemistry, Kyung Hee University, Seoul 02447, South Korea. E-mail: <u>walker@khu.ac.kr</u>

Fig. S1. O1s depth profile of (a) Ta_2O_5/In_2O_3 thin film stack and (b) SiO_2/In_2O_3 thin film stack in which the In_2O_3 layer was annealed at 300 °C for 5 minutes and 1 hour, respectively.

Fig. S2. Ultraviolet photoelectron spectra (UPS) of In_2O_3 and Ta_2O_5 thin films prepared on ITO substrates ($E_{WF} = 4.7 \text{ eV}$).

Fig. S3. XRD patterns corresponding to the sample stage and an Si/SiO₂ substrate.

Fig. S4. Contact angles of 2-methoxyethanol droplets on dielectric (SiO₂ and Ta₂O₅) surfaces.

Fig. S5. Contact angles of water droplets on dielectric (SiO₂ and Ta_2O_5) surfaces.

Fig. S6. High-magnification, cross-sectional TEM images of (a) SiO_2/In_2O_3 and (b) Ta_2O_5/In_2O_3 samples annealed for 60 minutes at 300 °C.

Fig. S7. Energy-dispersive X-ray spectroscopy (EDS) line profiles of (a) SiO_2/In_2O_3 and (b) Ta_2O_5/In_2O_3 samples. Background images are corresponding scanning TEM (STEM) images.

Fig. S8. Capacitance density – frequency (C-f) curve of Ta₂O₅ dielectric layer

Fig. S9. XPS spectra for In₂O₃ films for In 3d and O 1s with various annealing time.

Fig. 10. AFM topographical images for Ta₂O₅/In₂O₃ films with different annealing time

Fig. S11. (a) Transfer curves of In_2O_3 TFTs with different dielectric; SiO_2 and SiO_2/Ta_2O_5 . Both devices were fabricated with annealing at 300 °C for 5 minutes, to avoid damage of Ta_2O_5 layer during annealing process. (b) Capacitance – frequency curves for SiO_2 and SiO_2/Ta_2O_5 . (c, d) Hysteresis curves for SiO_2 and SiO_2/Ta_2O_5 devices, respectively.

Fig. S12. Transconductance, g_m versus V_{GS} of two devices. The values were acquired from the curves shown in Fig. 4a and 4c. Shaded area indicates the region where field effect mobilities of the devices are constant.

Fig. S13. (a) Transfer, (b) output and (c) gate leakage current characteristics of Ta_2O_5/In_2O_3 TFTs annealed for various lengths of time.

Fig. S14. Hysteresis characteristics for (a) SiO_2/In_2O_3 and (b) Ta_2O_5/In_2O_3 TFTs.