Electronic Supplementary Information for

Size dependence in two-dimensional lateral heterostructures of transition metal dichalcogenides

Hao Jin,^a Vincent Michaud-Rioux,^b Zhi-Rui Gong,^a Langhui Wan,^a Yadong Wei,^{*a} and Hong Guo,^{a,b}

^a Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; E-mail: ywei@szu.edu.cn

^b Centre for the Physics of Materials and Department of Physics, McGill University, Montréal H3A 2T8, Canada.

For armchair (zigzag) boundary, it is one-unit length along x(y) direction (see Fig. 1a of the manuscript), i.e. 5.51 Å (3.18 Å). While the length along y(x) direction varies. To better illustrate the size of the supercell employed in this work, we list the length and the number of atoms in Table S1 and S2.

Table S1. The length (as labelled in Fig. 1 of the manuscript) and the number of atoms employed in the supercell along armchair direction.

Length (Å)	Number of atoms
19.1	36
38.2	72
57.3	108
76.4	144
114.6	216
152.8	288
191.0	360
229.2	432
305.5	576

343.7	648
458.3	864

Table S2. The length (as labelled in Fig. 1 of the manuscript) and the number of	
atoms employed in the supercell along zigzag direction.	

Length (Å)	Number of atoms
44.1	48
88.2	96
132.3	144
176.4	192
264.6	288
352.8	384
441.0	480
529.2	576
705.6	768
882.0	960
1058.4	1152
1411.2	1536
1764.0	1920
2116.8	2304
2756.3	3000
3528.0	3840
4233.6	4608

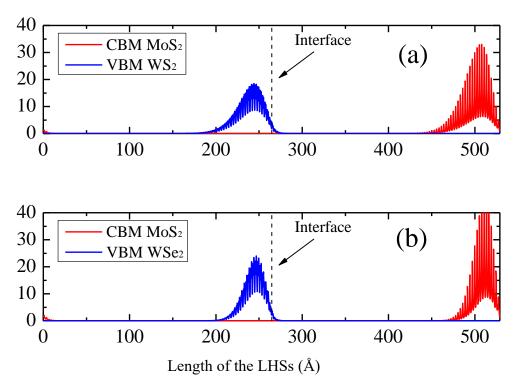


Fig. S1. Plane integrated modular square wave functions of the VBM $(|\psi_v(r)|^2)$ and CBM $(|\psi_c(r)|^2)$ for (a) MoS₂/WS₂ and (b) MoS₂/WSe₂ LHSs.

As shown in Fig. R1, the plane integrated modular square wave functions of the VBM $(|\psi_v(r)|^2)$ and CBM $(|\psi_c(r)|^2)$ of the MoS₂/WSe₂ LHS are similar to those of MoS₂/WS₂ LHS. As have been discussed in the manuscript, those wave functions determine the band structures of the LHSs. As such, we believe that MoS₂/WSe₂ LHS can show similar trend as compared with MoS₂/WS₂ LHS. Consequently, our conclusions are not limited to MoS₂/WS₂ LHS, but can be applied to other TMDs LHSs.