Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Dual-Stimulus Bilayer Hydrogel Actuators with Rapid, Reversible, Bidirectional

Bending Behaviors

Xiaomin He[†], Yan Sun[†], Jiahui Wu[†], Yang Wang[†], Feng Chen[†], Ping Fan[†], Mingqiang Zhong[†], Shengwei Xiao[‡], Dong Zhang[¶], Jintao Yang^{*†}, and Jie Zheng^{*¶}

[†]College of Materials Science& Engineering Zhejiang University of Technology, Hangzhou 310014, China

[‡] School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang 318000, China

[¶] Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, USA

*Corresponding Author: (J.Y.) <u>vangjt@zjut.edu.cn; (J.Z.)</u> <u>zhengj@uakron.edu</u>

Keywords: PolyNIPAM, GO, Hydrogel, Bilayer structure, Actuation

Figure S1. Tensile stress-strain curves of polyNIPAM/GO bilayer hydrogels prepared at a constant GO concentration of (a) 1.0 mg/mL and (b) 3.0 mg/mL with different centrifugation speeds of 1000, 2000, 3000, and 4000 rpm.

Figure S2. Cyclic loading–unloading curves of (a) GO1.R1000 and (b) GO3.R3000 hydrogels at different tensile strains.

Figure S3. Cyclic loading–unloading curves of (a) GO1.R1000 and (b) GO3.R3000 hydrogels at the same strain of 300 %.

Figure S4. (a) Deswelling kinetics and (b) volume change of pristine polyNIPAM hydrogel and polyNIPAM/GO hydrogel after immersing into 55 °C water. Scale bar=1 cm.