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Figure S1  Band structure of the B-AGNRs with width W = 6 (a), 9 (b), and 12 (c) in the family 
of W =3p, respectively, and the Fermi level is set zero.  
    Each ribbon possesses a partially-filled energy band (PFEB), which runs across the Fermi level of 
each ribbon with delocalization, and the B atom induced states locate above the Fermi level, resulting 
in nonmagnetic ground state. 
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Figure S2  Band structure of the B-AGNRs of width W = 8 (a), 11 (b), and 14 (c) in the family 

of W =3p+2, respectively, and the Fermi level is set zero.

Each ribbon possesses a partially-filled energy band (PFEB), which runs across the Fermi level of 

each ribbon with delocalization, and the B atom induced states locate above the Fermi level, resulting 

in nonmagnetic ground state. 

Figure S3  Fat band structure and PDOS of the B-AGNRs with width W = 6 (a), and 8 (b) under 

nonmagnetic ground state.

Although the pz orbital of B contributes the VBM, the VBM is delocalized. Although the system owns 

some localized states, they appear in CB region that is allowed and thus spin-splitting does not occur. 



Figure S4  The electronic band structures of the (4, 6), (4, 7), and (4, 8) B-AGNRs calculated 

by the Heyd-Scuseria-Ernzerhof (HSE06) screened hybrid functional. 

One can see that spin-splitting occurs only in (4, 7) B-AGNR, which belongs to the family of 

W=3p+1, due to that it possesses a largely localized band right at the Fermi level under NM 

state. And a magnetic moment of 1.0 μB also presents at the FM ground state. Thus the same 

conclusion as predicted from GGA-PBE is reached in HSE06 framework.

Designing of graphene nanoribbon:

Both the theoretical and experimental studies proved that the properties of graphene 

nanoribbons (GNRs) are mainly dependent on their geometric structures [1,2]. Up to now, there exist 

two main types of methods for preparing GNRs with precise edge structures, namely top-down and 

bottom-up synthesis. For the top-down synthesis of GNRs, two typical methods have been proposed 

are realized in experiments. The one is to cut or etch graphene or graphite precursors into 

nanoribbons [3,4], and the other is to longitudinally unzip single-walled and multi-walled carbon 

nanotubes (CNTs) to produce GNRs[5,6]. For bottom-up preparing of GNRs, it starts with the rational 

design and self-assembly of small-molecule precursors [7-9]. This method can utilize a two-step 

polymerization sequence and then carry out cyclization dehydrogenation. The first case of bottom-

up synthesis of atomically precise GNRs with width of W = 7 was published by researchers in 

2010[7]. And ultranarrow AGNRs (W = 5) with precise edge structures have already been 

synthesized by Zhang et al in 2015[8]. 
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