Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information for: Spiro-Silafluorene-Phenazasiline Donor based Efficient Blue Thermally Activated Delayed Fluorescence Emitter and its Host Dependent Device Characteristics

Seung-Je Woo, ^a Youheon Kim,^b Yun-Hi Kim, ^{*,b} Soon-Ki Kwon, ^{*,c} and Jang-Joo Kim^{*,a}

^aDepartment of Materials Science and Engineering, Seoul National University, Seoul 151-742, South Korea

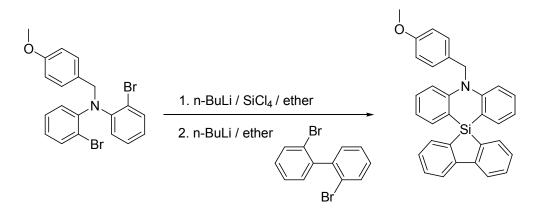
^bDepartment of Chemistry and RIGET, Gyeongsang National University, jinju 660-701, South Korea

^cDepartment of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju 660-701, South Korea

Table of Contents:

- 1. Synthesis of the molecule
- 2. Supplementary Figures

1. Synthesis of the molecule

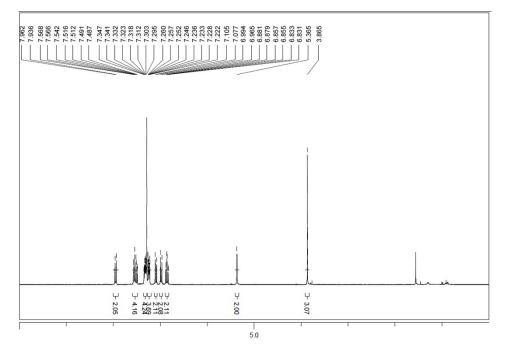

1.1. Materials

All reagents were purchased from Aldrich and TCI. Solvents were dried by using standard procedures. 2-Bromo-N-(2-bromophenyl)-N-(4-methoxybenzyl)aniline was synthesized by reported method. (Chemistry of Materials, 27, 6675-6681; 2015, **DOI:** 10.1021/acs.chemmater.5b02515)

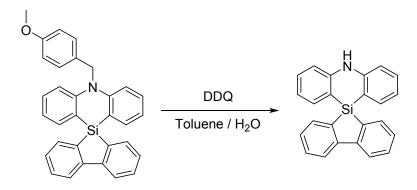
1.2. Instruments

¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker 300 and Avance 500 spectrometer. A Jeol JMS-700 mass spectrometer was used to obtain the mass spectra of the samples.

1.3. Synthesis and Characterization

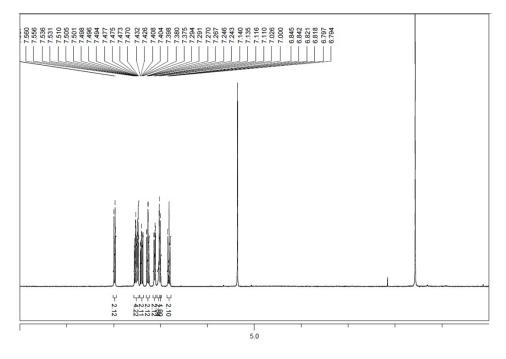


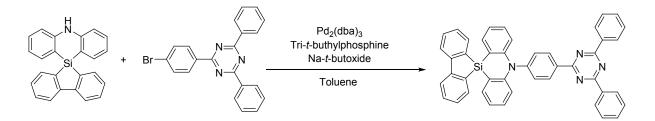
Synthesis of 5'-(4-methoxybenzyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline]. 2.5 M *n*-BuLi/hexane (6.22 mL, 15.54 mmol) was added to the mixture of 2-bromo-N-(2-bromophenyl)-N-(4-methoxybenzyl)aniline (3.16 g, 7.06 mmol) and 200 mL of ether at 0 °C. After the mixture was stirred for 30 min at 0 °C, the solution of tetrachlorosilane (0.81 mL, 7.06 mmol) was added to the mixture. The solution was stirred for 4 h at room temperature.


And then 2.5 M *n*-BuLi/hexane (6.22 mL, 15.55 mmol) was added to the mixture of 2,2'-dibromo-1,1'biphenyl (2.2 g, 7.06 mmol) and 20 mL of ether at -78 °C in another flask. After the mixture was stirred for 1h at -78 °C, this mixture was transferred to the first reaction flask. The solution was extracted by using water and ether. The ether layer was dried by MgSO₄, and ether was evaporated. The crude product was purified by recrystallization using dichloromethane /hexane (1/4). Yield: 2.24 g (67.91 %),

¹H-NMR (300 MHz, CDCl₃) δ = 7.96-7.93 (d, 2H), 7.57-7.49 (m, 4H), 7.35-7.30 (m, 4H), 7.26-7.22 (m,

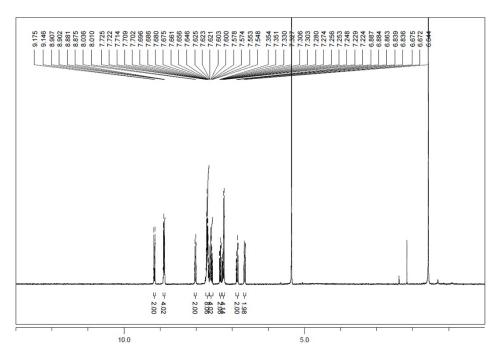
4H), 7.10-7.08 (d, 2H), 6.99-6.96 (d, 2H), 6.88-6.83 (t, 2H), 5.36 (s, 2H), 3.82 (s, 3H).


Synthesis Figure 1. ¹H-NMR Spectra of 5'-(4-methoxybenzyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].

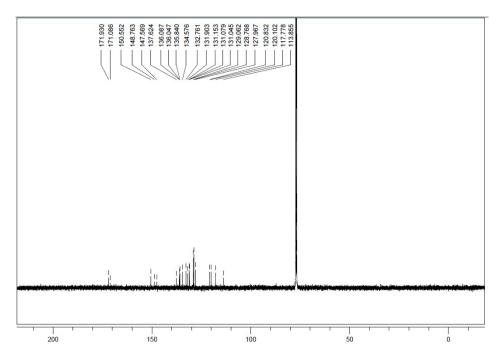

Synthesis of 5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].

5'-(4-Methoxybenzyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline] (1.86 g, 3.98 mmol), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (0.99 g, 4.38 mol), toluene (20 mL) and H₂O (2 mL) were mixed, and refluxed at 80 °C for 14 h. After reaction, the solution was extracted by using ethyl acetate. The crude product was purified by column chromatography using hexane/ethyl acetate (5/1). Yield: 0.5 g (36.18 %).

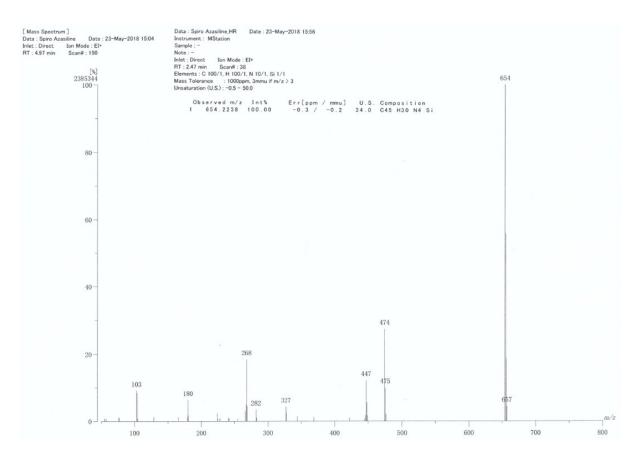
¹H-NMR (300 MHz, CD₂Cl₂) δ = 7.99-7.96 (d, 2H), 7.56-7.50 (t, 2H), 7.50-7.47 (m, 2H), 7.43-7.37 (m, 2H), 7.29-7.24 (t, 2H), 7.14-7.11 (d, 2H), 7.03-7.02 (d, 2H), 7.00 (s, 1H), 6.84-6.79 (t, 2H).

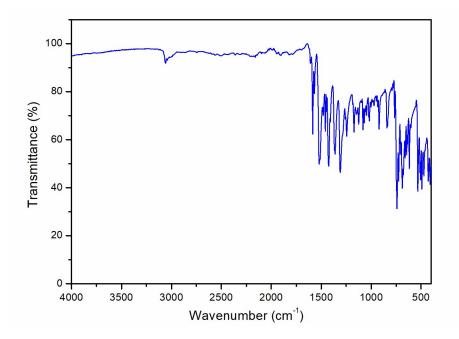


Synthesis Figure 2. ¹H-NMR Spectra of 5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].



Synthesis of 5'-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].


5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline] (0.4 g, 1.15 mmol) and 2-(4-bromo-3methylphenyl)-4,6-diphenyl-1,3,5-triazine (0.45 g, 1.15 mmol) were mixed in dry toluene (5.75 mL). Na*t*-butoxide (0.33)mmol). tri-*t*-buthylphosphine (0.02)0.115 3.45 mmol) and g, g, tris(dibenzylideneacetone)dipalladium(0) (0.05 g, 0.058 mmol) was added and stirred for 10 h at 90 °C. The reaction mixture was extracted with dichloromethane and dried over anhydrous MgSO₄. The product was purified by a column with hexane and dichloromethane (Hex : MC = 3:1). Yield : 0.47 g, (62.35 %) ¹H-NMR (300 MHz, CD₂Cl₂) δ = 9.17-9.14 (d, 2H), 8.90-8.87 (m, 4H), 8.03-8.01 (d, 2H), 7.72-7.64 (m, 8H), 7.62-7.54 (m, 4H), 7.35-7.30 (t, 2H), 7.28-7.22 (m, 4H), 6.88-6.83 (t, 2H), 6.67-6.64 (d, 2H). ¹³C-NMR (500 MHz, CDCl₃) δ = 171.93, 171.08, 150.55, 148.76, 147.57, 137.62, 136.09, 136.05, 135.84, 134.58, 132.76, 131.90, 131.15, 131.08, 131.05, 129.06, 128.77, 127.97, 120.83, 120.10, 117.78, 113.85. HRMS (EI) m/z C₄₅H₃₀N₄Si Cacld: 654.2240, Found: 654.2238 (M+, 100%).


Synthesis Figure 3. ¹H-NMR Spectra of 5'-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].

Synthesis Figure 4. ¹³C-NMR Spectra of 5'-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].

Synthesis Figure 5. EI Mass Spectra of 5'-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-5'H-spiro[dibenzo[b,d]silole-5,10'-dibenzo[b,e][1,4]azasiline].

Synthesis Figure 6. FT-IR spectrum of SAzTrz.

Synthesis	Table	1. Element	Analysis	of SAzTrz

	Sample(mg)	Nitrogen(%)	Carbon(%)	Hydrogen(%)	Sulfur(%)
Sample 1	2.149	8.1569	82.494	4.5425	N.D
Sample 2	2.361	8.2224	82.595	4.4755	N.D
Sample 3	2.512	8.1621	81.943	4.4407	N.D

2. Supplementary Table and Figures

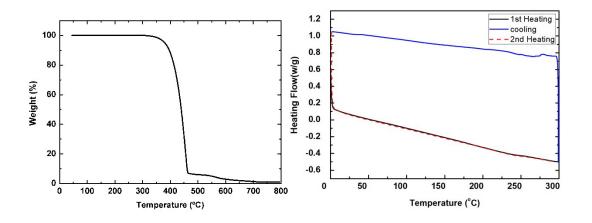


Figure S1. Thermogravimetric analysis (TGA) and differencial scanning calorimetry (DSC) of SAzTrz.

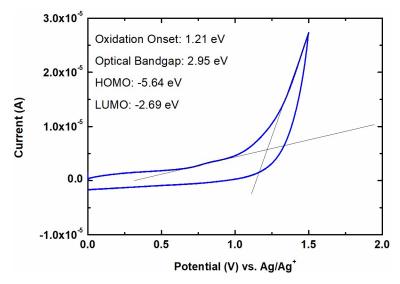
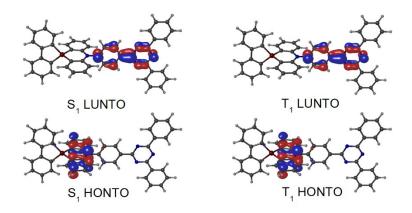



Figure S2. Cyclic Voltammetry curve of SAzTrz.

Figure S3. Optimized S_1 state geometry and natural transition orbitals of $S_1 \rightarrow S_0$ and $T_1 \rightarrow S_0$ of SAzTrz.

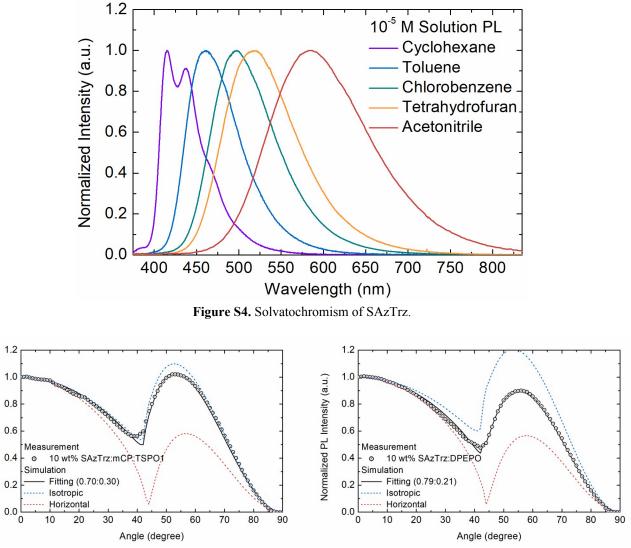


Figure S5. Angle-Dependent PL intensity of p-polarized light from 10 wt% SAzTrz: mCP:TSPO1 and 12 wt% SAzTrz:DPEPO 30 nm films at the wavelength of PL peak of each film.

Normalized PL Intensity (a.u.)

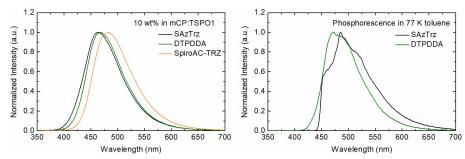


Figure S6. PL spectra of SAzTrz, DTPDDA, and SpiroAC-TRZ in 10 wt% mCP:TSPO1 film and phosphorescence of SAzTrz and DTPDDA in 77 K toluene.

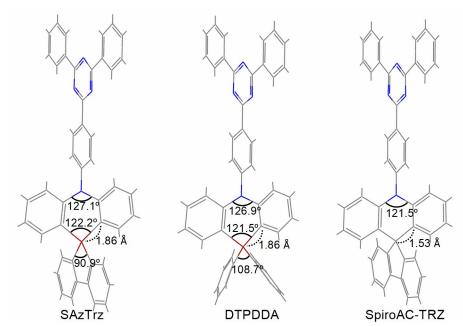


Figure S7. Bond angles and length of SAzTrz, DTPDDA, and SpiroAC-TRZ at optimized S₀ geometry.

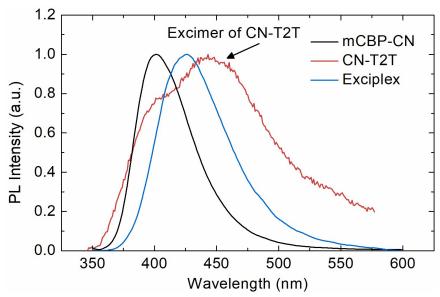


Figure S8. PL spectra of mCBP-CN, CN-T2T, and the exciplex.

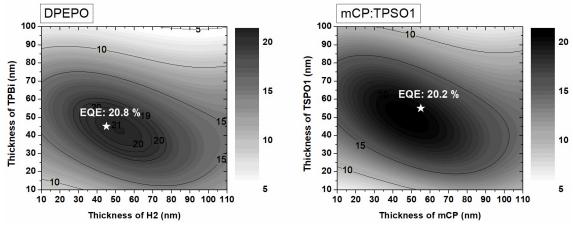


Figure S9. EQE simulation of DPEPO and mCP:TSPO1 host device.

Table S1. Photophysical properties of SAzTrz, DTPDDA, and SpiroAC-TRZ. (10-5 M toluene solution for a and 10 wt% in mCP:TSPO1 film for b-g)

Material	Peak _{sol} ^a (nm)	Peak _{film} ^b (nm)	ΔE_{ST}^{c} (eV)	PLQY ^d (%)	Φ _p ^e (%)	Φ _d ^f (%)	Θ ^g (%)
SAzTrz	458	465	0.25	65	11	89	70
DTPDDA	465	468	0.16	70	19	81	66
SpiroAC-TRZ	486	483	0.07	98	20	80	71

Table S2. EL device characteristics of SAzTrz, DTPDDA, and SpiroAC-TRZ. amaximum EQE of real device. bCalculatedmaximum EQE by optical simulation based on PLQY and Θ of the emitters . cEstimated RISC efficiency. dPL quantum yield.eHorizontal ratio of emitting dipole orientation.

Material	Host	EQE _{max} ^a (nm)	EQE _{max,cal} ^b (nm)	$\Phi_{\mathrm{RISC}}^{\mathrm{c}}(\%)$	PLQY ^d (%)	Θ ^e (%)
SAzTrz	DPEPO	20.6	20.8	~100	68	79
SAzTrz	mCP:TSPO1	8.2	20.2	~20	65	70
DTPDDA ⁴³	mCP:TSPO1	22.3	22.0	~100	70	66
SpiroAC-TRZ ⁸	mCP-CN	36.7	38.3	~100	100	83