Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Figure S1. Plane-view SEM image of the (a) pristine ZnO NRs, (b) H:ZnO NRs-350 and (c) ZIF-8@H:ZnO NRs. (d) Cross-sectional SEM image of the ZnO NRs film.

Figure S2. (a) XPS O 1s spectrum of ZIF-8@H:ZnO NRs. XPS Zn 2p spectrum of (b) pristine ZnO NRs, (c) H:ZnO NRs and (d) ZIF-8@H:ZnO NRs.

Figure S3. Gaussian distribution fitting curve of the Raman mode centered at (a) \sim 576 cm⁻¹ and \sim 650 cm⁻¹ for pristine ZnO NRs, (b) \sim 566 cm⁻¹ and \sim 650 cm⁻¹ for H:ZnO NRs-350 and (c) \sim 566 cm⁻¹ and \sim 650 cm⁻¹ for ZIF-8@H:ZnO NRs.

Figure S4. Relative intensity of 584 cm⁻¹ peak (oxygen vacancies) for pristine ZnO NRs, H:ZnO NRs-350 and ZIF-8@H:ZnO NRs. Relative intensity can be calculated according to the following equation: Relative intensity for X = the intensity of 584 cm⁻¹ peak for X/ the intensity of 579 cm⁻¹ peak for X, X = pristine ZnO NRs, H:ZnO NRs-350 and ZIF-8@H:ZnO NRs.

Figure S5. Photocurrent switching performance of the fabricated devices under periodic (a) 365 nm, (c) 650 nm, (e) 900 nm light illumination. External voltages: 0 V. The performance comparison between different devices under (b) 365 nm, (d) 650 nm, (f) 900 nm light illumination. External voltages: 0 V.

Figure S6. (a) Schematic illustration of the ZIF-8@H:ZnO NRs/*p*-Si heterojunction photodetector. (b) Schematic illustration of measurement circuit for measuring the response time of the device. From top to bottom the device is divided into four layers in order: Pd, ZIF-8@H:ZnO NRs, *p*-Si and In.

Figure S7. The (a) rise and (b) fall edge, respectively, of the ZIF-8@H:ZnO NRs/p-Si heterojunction photoresponse curve.

Figure S8. Photoresponse of the photodetector measured before and after storing in the air for 2 months under 900 nm light illumination.

Figure S9. Relative intensity of EPR signal for pristine ZnO NRs/Si, H:ZnO NRs-350/Si and ZIF-8@H:ZnO NRs/Si. (Relative intensity can be calculated according to the following equation: Relative intensity for X = the intensity for X/the intensity for ZIF-8@H:ZnO NRs/Si, X = pristine ZnO NRs/Si, H:ZnO NRs-350/Si and ZIF-

8@H:ZnO NRs/Si.)

Figure S10. The absorption spectra of pristine ZnO NRs/Si, H:ZnO NRs-350/Si and ZIF-8@H:ZnO NRs/Si respectively.

Table S1. Performance comparison of our ZIF-8@H:ZnO NRs/Si heterojunction self-powered photodetector with previous reported ZnO-based self-powered devices.

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
H:VZnO nanoflakes/ PEDOT:PSS	p-n	365	2.65	5.25×10 ¹⁰	23/26	1
ZnO/graphene/Cu ₂ O	p-g-n	365	21.2		6/6	2
Cl-ZnO nanorods /DMSO-PEDOT: PSS	p-n	365	0.80	1.12×10 ¹⁰	30/32	3
ZnO/ZnS	n-n	340	56		40/40	4
ZnO homojunction nanofibers	p-n	360	1		3900/4700	5
ZnO nanorods /RGO	p-n	365			100/200	6
ZnO/Spiro- MeOTAD	p-n	365	0.8	4.2×10 ⁹	160/200	7
Ga:ZnO nanorods /p-GaN	p-n	365	230	2.32×10 ¹²		8
Pt/Al ₂ O ₃ /ZnO	MIS	Xe lamp	1.78×10 ⁻³	7.99×10 ⁷	100/100	9
CuSCN/ZnO nanorods	p-n	365	22.5		3200/3840	10
Au/MoO ₃ /Perovskite /ZnO nanorods	heterojunction	500	2.43×10 ⁴	3.56×10 ¹⁴	700/600	11
Pd/ZnO/Al	MSM	370	230		10/10	12
Graphene/ZnO nanowires/graphene	MSM	365	0.54			13

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
ZnO nanorods /p-Si	p-n	395			25/22	14
Au/ZnO/Au	MSM	365	30		0.71 µs/4 µs	15
Graphene/ZnO:Al nanorods	Schottky	380	39		0.037/0.33	16
P3HT/ZnO nanowires	p-n	365	0.125	3.7×10 ⁷	100/100	17
ZnO/NiO	p-n	372	0.493		1.38 µs	18
Cl:ZnO nanorods /PEDOT:PSS	p-n	365	2.3354	1.5414×10 ¹⁰	28/23	19
ZnO/Ga ₂ O ₃	n-n	251	9.7	6.29×10 ¹²	0.1/0.9	20
ZnO/CNTs	Schottky	325	2.75×10 ⁴		0.48/0.65	21
ZnO nanowires/ CuSCN	p-n	370	20			22
ZnO nanowires /Si	p-n	1064	220		15 μs/21 μs	23
Pt/ZnO	Schottky	365	1.82		81/95	24
ZnO/Cu ₂ O	p-n		7.7×10 ⁻³		90/90	25
Graphene/ZnO /n-Si	g-n-n	488	500		0.28/0.54	26
ZnO/p-Si	p-n	450			130	27

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
β-Ga ₂ O ₃ /Ga:ZnO	n-n	254	0.763		179/272	28
ZnO/Spiro- MeOTAD	p-n	390	17		0.2/0.95	29
		470	6.5		4/10	
Au/ZnO	Schottky	325			10/10	30
ZnO/MgO/GaN	p-i-n	350	320	8.0×10 ¹²		31
Perovskite/ZnO nanoparticles	heterojunctio n	405	11.5		409/17.92	32
Au/α-Ga ₂ O ₃ /ZnO	Schottky+ n-n	230	3.42	9.66×10 ¹²		33
ZnO nanowires/ PEDOT:PSS	p-n	325	3.5	7.5×10 ⁹	5.8/7.3	34
ZnO nanowires /PVK	p-n	325	9.96		1500/6000	35
Perovskite/ZnO	heterojunctio n	325	26.7	4.0×10 ¹⁰	0.053/0.063	36
ZnO/Se	p-n	370	2.56		0.69/13.5	37
ZnO/CuCrO ₂ nanowires	p-n	395	5.87		0.032/0.035	38
ZIF-8@H:ZnO NRs/Si	p-n	365	209.6	6.354×10 ¹³	0.252/0.607	This work
		650	536	1.625×10 ¹⁴		

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
ZIF-8@H:ZnO NRs/Si	p-n	900	7.07×10 ⁴	2.142×10 ¹⁶	0.252/0.607	This work

REFERENCE

- 1. B. Deka Boruah and A. Misra, ACS Appl Mater Interfaces, 2016, 8, 18182-18188.
- 2. Z. Bai, J. Liu, F. Liu and Y. Zhang, Journal of Alloys and Compounds, 2017, 726, 803-809.
- 3. B. D. Boruah, S. N. Majji and A. Misra, *Nanoscale*, 2017, 9, 4536-4543.
- H. Lin, L. Wei, C. Wu, Y. Chen, S. Yan, L. Mei and J. Jiao, *Nanoscale research letters*, 2016, 11, 420.
- 5. Y. Ning, Z. Zhang, F. Teng and X. Fang, *Small*, 2018, DOI: 10.1002/smll.201703754, 1703754.
- 6. H. Yang, J. Li, D. Yu and L. Li, *Crystal Growth & Design*, 2016, 16, 4831-4838.
- Y. Shen, X. Yan, H. Si, P. Lin, Y. Liu, Y. Sun and Y. Zhang, ACS Appl Mater Interfaces, 2016, 8, 6137-6143.
- L. Yang, H. Zhou, M. Xue, Z. Song and H. Wang, Sensors and Actuators A: Physical, 2017, 267, 76-81.
- 9. Z. Zhang, Q. Liao, Y. Yu, X. Wang and Y. Zhang, *Nano Energy*, 2014, 9, 237-244.
- Y. Zhang, J. Xu, S. Shi, Y. Gao, C. Wang, X. Zhang, S. Yin and L. Li, ACS Appl Mater Interfaces, 2016, 8, 22647-22657.
- J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, P. A. van Aken, P. D. Lund and H. Wang, *Journal of Materials Chemistry C*, 2016, 4, 7302-7308.
- 12. M. Husham, M. N. Hamidon, S. Paiman, A. A. Abuelsamen, O. F. Farhat and A. A. Al-Dulaimi, *Sensors and Actuators A: Physical*, 2017, 263, 166-173.
- 13. B. D. Boruah, A. Mukherjee and A. Misra, *Nanotechnology*, 2016, 27, 095205.
- 14. J. J. Hassan, M. A. Mahdi, S. J. Kasim, N. M. Ahmed, H. Abu Hassan and Z. Hassan, *Applied Physics Letters*, 2012, 101, 261108.
- 15. H.-Y. Chen, K.-W. Liu, X. Chen, Z.-Z. Zhang, M.-M. Fan, M.-M. Jiang, X.-H. Xie, H.-F. Zhao and D.-Z. Shen, *J. Mater. Chem. C*, 2014, 2, 9689-9694.
- L. Duan, F. He, Y. Tian, B. Sun, J. Fan, X. Yu, L. Ni, Y. Zhang, Y. Chen and W. Zhang, ACS Appl Mater Interfaces, 2017, 9, 8161-8168.
- 17. B. Ouyang, K. Zhang and Y. Yang, Advanced Materials Technologies, 2017, 2, 1700208.
- 18. P.-N. Ni, C.-X. Shan, S.-P. Wang, X.-Y. Liu and D.-Z. Shen, *Journal of Materials Chemistry* C, 2013, 1, 4445.
- 19. B. Deka Boruah, S. Naidu Majji, S. Nandi and A. Misra, *Nanoscale*, 2018, 10, 3451-3459.
- 20. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao and X. Fang, Advanced Functional

Materials, 2017, 27, 1700264.

- 21. C.-H. Lin, H.-C. Fu, D.-H. Lien, C.-Y. Hsu and J.-H. He, *Nano Energy*, 2018, 51, 294-299.
- J. Garnier, R. Parize, E. Appert, O. Chaix-Pluchery, A. Kaminski-Cachopo and V. Consonni, ACS Appl Mater Interfaces, 2015, 7, 5820-5829.
- 23. X. Wang, Y. Dai, R. Liu, X. He, S. Li and Z. L. Wang, ACS Nano, 2017, 11, 8339-8345.
- 24. Z. Bai, X. Chen, X. Yan, X. Zheng, Z. Kang and Y. Zhang, *Physical chemistry chemical physics : PCCP*, 2014, 16, 9525-9529.
- P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan, A. L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino and A. Vomiero, *Nano Energy*, 2018, 51, 308-316.
- 26. C.-C. Cheng, J.-Y. Zhan, Y.-M. Liao, T.-Y. Lin, Y.-P. Hsieh and Y.-F. Chen, *Applied Physics Letters*, 2016, 109, 053501.
- B. Yin, Y. Qiu, H. Zhang, Y. Luo, Y. Zhao, D. Yang and L. Hu, *Semicond. Sci. Technol.*, 2017, 32, 064002.
- Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang and W. Tang, *Journal of Materials Chemistry C*, 2017, 5, 8688-8693.
- 29. O. Game, U. Singh, T. Kumari, A. Banpurkar and S. Ogale, Nanoscale, 2014, 6, 503-513.
- S. Lu, J. Qi, S. Liu, Z. Zhang, Z. Wang, P. Lin, Q. Liao, Q. Liang and Y. Zhang, ACS Appl Mater Interfaces, 2014, 6, 14116-14122.
- 31. H. Zhou, P. Gui, Q. Yu, J. Mei, H. Wang and G. Fang, *Journal of Materials Chemistry C*, 2015, 3, 990-994.
- C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang and J. Du, Sol. Energy Mater. Sol. Cells, 2017, 172, 341-346.
- X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng and J. Ye, ACS Appl Mater Interfaces, 2017, 9, 36997-37005.
- 34. W. Peng, X. Wang, R. Yu, Y. Dai, H. Zou, A. C. Wang, Y. He and Z. L. Wang, *Advanced materials*, 2017, 29.
- 35. Y. Dong, Y. Zou, J. Song, Z. Zhu, J. Li and H. Zeng, Nano Energy, 2016, 30, 173-179.
- Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang, F. Yi and Z. L. Wang, *Nature communications*, 2015, 6, 8401.
- K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen and X. Fang, *Laser & Photonics Reviews*, 2017, 11, 1600257.
- T. Cossuet, J. Resende, L. Rapenne, O. Chaix-Pluchery, C. Jiménez, G. Renou, A. J. Pearson, R. L. Z. Hoye, D. Blanc-Pelissier, N. D. Nguyen, E. Appert, D. Muñoz-Rojas, V. Consonni and J.-L. Deschanvres, *Advanced Functional Materials*, 2018, DOI: 10.1002/adfm.201803142, 1803142.

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
Graphene/Si	Schottky	532	510		0.13/0.135	1
Au/InSe	Schottky	365	369			2
		685	244		23/25	
Au/PS-MAPbI ₃	Schottky	710	610	1.5×10 ¹³	13/14	3
Diamond/ β-Ga ₂ O ₃	p-n	244	0.2	6.9×10 ⁹		4
NiO/TiO ₂ NRs	p-n	380	1.34	5.92×10 ¹¹	100/100	5
NiO/TiO ₂ NRs /TiO _x			5.66	2.5×10 ¹²		
Ag/Graphene /GaAs	van der Waals heterojunction	405	210	2.98×10 ¹³		6
PtSe ₂ /Perovskite	Schottky	808	117.7	2.91×10 ¹²	78/60 ns	7
CdS NRs/RGO	Schottky	530	0.58	7.2×10 ¹¹	1.3/1.7	8
MoTe ₂ /MoS ₂	Van der Waals heterojunction	637	46		0.06	9
GaSe/WS ₂	p-n	350	90		37/43 µs	10
Au/Perovskite	Schottky	650			45/91 ns	11

Table S2. Performance comparison of our ZIF-8@H:ZnO NRs/Si heterojunction self-powered photodetector with other previous reported self-powered devices.

Photodetector	Туре	$\lambda(nm)$	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
TiO ₂ /graphene /Perovskite	heterojunction	530	0.375	4.5×10 ¹¹	5/5	12
Graphene/Si	Schottky	750	400	5.4×10 ¹²	6.7/8.6	13
MoS ₂ /GaAs	heterojunction	635	419	1.9×10 ¹⁴	0.017/0.031	14
RGO/Si	p-n	600	1520		2/3.7	15
GaN/SiO ₂ /MoS ₂	heterojunction	633			400/350	16
RGO-MoS ₂ / pyramid Si	heterojunction	808	2.18×10 ⁴	3.8×10 ¹⁵	2.8/46.6 µs	17
MoS ₂ /Perovskite	heterojunction	white light	60		2149/899	18
GaN microwires array/Si	p-n	325	131	3.4×10 ¹²	2/2	19
		700	310	9.5×10 ¹²	8/8	
		825	474	3.4×10 ¹²	9/8	
CsPbBr ₃ - Cs4PbBr ₆	heterojunction	254	49.4	1.2×10 ¹²	7.8/33.6 µs	20
Bi ₂ Se ₃ /Si	heterojunction	808	2.6×10 ³	4.39×10 ¹²	2.5/5.5 μs	21
TiN:PPA	hybrid	570	570	1.92×10 ¹¹	9.23/18.12	22
MoO _{3-x} /Si	n-n	900		6.29×10 ¹²	1/51.4 µs	23

Photodetector	Туре	λ (nm)	Responsivity (mA/W)	Detectivity (Jones)	T_r/T_d (ms)	Ref.
γ-In ₂ Se ₃ /Si	p-n	820	800		0.175/0.226	24
CuO/Si nanowires	p-n	405	0.389	3.00×10 ⁹	60/80 µs	25
		532	0.105	1.00×10 ⁹		
		1064	0.064	7.60×10 ⁹		
MoS ₂ /Si	p-n	808	300	1013	3/40 µs	26
C Quantum dots/Si nanowires	heterojunction	600	353	3.79×10 ⁹	20/40 µs	27
Se/TiO ₂ nanotubes	p-n	620	100	6.2×10 ¹²	1.4/7.8	28
SnTe/Si	heterojunction	808	128	8.4×10 ¹²	8/390 µs	29
ZIF-8@H:ZnO nanorods/Si	p-n	365	209.6	6.354×10 ¹³	0.252/0.607	This work
		650	536	1.625×10 ¹⁴		
		900	7.07×10 ⁴	2.142×10 ¹⁶		

REFERENCE

- 1. D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.-H. He and J. Kulandaivel, *Journal of Materials Chemistry C*, 2018, 6, 9545-9551.
- M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C. Y. Xu and P. Hu, ACS Nano, 2018, 12, 8739-8747.
- 3. R. Saraf and V. Maheshwari, ACS Appl Mater Interfaces, 2018, 10, 21066-21072.
- 4. Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong and C.-X. Shan, Journal of

Materials Chemistry C, 2018, 6, 5727-5732.

- Y. Gao, J. Xu, S. Shi, H. Dong, Y. Cheng, C. Wei, X. Zhang, S. Yin and L. Li, ACS Appl Mater Interfaces, 2018, DOI: 10.1021/acsami.7b18815.
- Y. Lu, S. Feng, Z. Wu, Y. Gao, J. Yang, Y. Zhang, Z. Hao, J. Li, E. Li, H. Chen and S. Lin, *Nano Energy*, 2018, DOI: 10.1016/j.nanoen.2018.02.056.
- Z. X. Zhang, Z. Long-Hui, X. W. Tong, Y. Gao, C. Xie, Y. H. Tsang, L. B. Luo and Y. C. Wu, J. Phys. Chem. Lett., 2018, 9, 1185-1194.
- 8. X.-X. Yu, H. Yin, H.-X. Li, H. Zhao, C. Li and M.-Q. Zhu, *Journal of Materials Chemistry C*, 2018, 6, 630-636.
- Y. Chen, X. Wang, G. Wu, Z. Wang, H. Fang, T. Lin, S. Sun, H. Shen, W. Hu, J. Wang, J. Sun, X. Meng and J. Chu, *Small*, 2018, 14.
- 10. Q. Lv, F. Yan, X. Wei and K. Wang, Advanced Optical Materials, 2018, 6, 1700490.
- F.-X. Liang, J.-Z. Wang, Z.-X. Zhang, Y.-Y. Wang, Y. Gao and L.-B. Luo, Advanced Optical Materials, 2017, 5, 1700654.
- 12. J. Li, S. Yuan, G. Tang, G. Li, D. Liu, J. Li, X. Hu, Y. Liu, J. Li, Z. Yang, S. F. Liu, Z. Liu, F. Gao and F. Yan, *ACS Appl Mater Interfaces*, 2017, 9, 42779-42787.
- 13. D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu and W. Chen, *Small*, 2015, 11, 4829-4836.
- 14. Z. Xu, S. Lin, X. Li, S. Zhang, Z. Wu, W. Xu, Y. Lu and S. Xu, *Nano Energy*, 2016, 23, 89-96.
- 15. G. Li, L. Liu, G. Wu, W. Chen, S. Qin, Y. Wang and T. Zhang, Small, 2016, 12, 5019-5026.
- 16. P. Perumal, C. Karuppiah, W. C. Liao, Y. R. Liou, Y. M. Liao and Y. F. Chen, *Scientific reports*, 2017, 7, 10002.
- P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu, X. Zhang, X. Zhang and J. Jie, *Advanced materials*, 2018, DOI: 10.1002/adma.201801729, e1801729.
- 18. F. Bai, J. Qi, F. Li, Y. Fang, W. Han, H. Wu and Y. Zhang, *Advanced Materials Interfaces*, 2018, 5, 1701275.
- 19. W. Song, X. Wang, H. Chen, D. Guo, M. Qi, H. Wang, X. Luo, X. Luo, G. Li and S. Li, *Journal of Materials Chemistry C*, 2017, 5, 11551-11558.
- G. Tong, H. Li, Z. Zhu, Y. Zhang, L. Yu, J. Xu and Y. Jiang, *The Journal of Physical Chemistry Letters*, 2018, DOI: 10.1021/acs.jpclett.8b00429, 1592-1599.
- 21. H. Zhang, X. Zhang, C. Liu, S. T. Lee and J. Jie, ACS Nano, 2016, 10, 5113-5122.
- 22. A. A. Hussain, B. Sharma, T. Barman and A. R. Pal, ACS Appl Mater Interfaces, 2016, 8, 4258-4265.
- 23. C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai and W. Xie, *ACS Appl Mater Interfaces*, 2015, 7, 25981-25990.
- 24. S. Chen, X. Liu, X. Qiao, X. Wan, K. Shehzad, X. Zhang, Y. Xu and X. Fan, Small, 2017, 13.
- 25. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He and J. L. Sun, ACS Appl Mater Interfaces, 2014, 6, 20887-20894.
- 26. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun and S.-T. Lee, *Advanced Functional Materials*, 2015, 25, 2910-2919.
- C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu and Y. Wu, *Acs Nano*, 2014, 8, 4015-4022.
- 28. L. Zheng, K. Hu, F. Teng and X. Fang, *Small*, 2017, 13.
- 29. S. Gu, K. Ding, J. Pan, Z. Shao, J. Mao, X. Zhang and J. Jie, Journal of Materials Chemistry

A, 2017, 5, 11171-11178.