Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

High-performance blue fluorescent/electroactive polyamide bearing <i>p</i> -						
phenylenediamine	and	asymmetrical	SBF/TPA-based	units	for	
electrochromic and	electro	ofluorochromic r	nultifunctional ap	plicatio	ns	

Fig. S1 FTIR spectra of the compounds 4-nitro-4-methoxydiphenylamine, SBF-NO ₂ , SBF-NH ₂ ,
SBF-2NO ₂ and SBF-2NH ₂
Fig. S2 FTIR spectra of SBF-HPA and SBF-DPA2
Fig. S3 ¹ H NMR spectra of SBF-HPA and SBF-DPA
Fig. S4 DSC curves of SBF-HPA and SBF-DPA
Fig. S5 TGA curves of SBF-HPA and SBF-DPA4
Fig. S6 (a) Cyclic voltammetric diagrams of SBF-DPA at a scan rate of 50 mV s ⁻¹ . (b)
Absorbance spectra of SBF-DPA thin film electrode in 0.1 M TBAP/CH ₃ CN at different applied
potentials from 0.00 to 1.15 V4
Fig. S7 (A) EC switching of SBF-HPA film between 0.00 and 1.15 V with a cycle time of 20 s: (a)
transmittance changes and (b) current consumption at the monitored wavelength of 850 nm.
(B) Optical switching time at 850 nm5
Table S1. Molecular Weights and Solubilities of SBF-HPA and SBF-DPA. 5
Table S2. Thermal properties of SBF-HPA and SBF-DPA5

Fig. S1 FTIR spectra of the compounds 4-nitro-4-methoxydiphenylamine, SBF-NO₂, SBF-NH₂, SBF-2NO₂ and SBF-2NH₂.

Fig. S2 FTIR spectra of SBF-HPA and SBF-DPA.

Fig. S3 ¹H NMR spectra of SBF-HPA and SBF-DPA.

Fig. S4 DSC curves of SBF-HPA and SBF-DPA.

Fig. S5 TGA curves of SBF-HPA and SBF-DPA.

Fig. S6 (a) Cyclic voltammetric diagrams of SBF-DPA at a scan rate of 50 mV s⁻¹. (b) Absorbance spectra of SBF-DPA thin film electrode in 0.1 M TBAP/CH₃CN at different applied potentials from 0.00 to 1.15 V.

Fig. S7 (A) EC switching of SBF-HPA film between 0.00 and 1.15 V with a cycle time of 20 s: (a) transmittance changes and (b) current consumption at the monitored wavelength of 850 nm. (B) Optical switching time at 850 nm.

		GPC ^a				Solv	ents ^b			
Sample	M _w	Mn	PDI	NMP	DMA c	DMF	DMSO	THF	CHCl₃	CH₃CN
SBF-HPA	9530 0	9200 0	1.04	++	++	++	++	++	+-	
SBF-DPA	5560 0	4020 0	1.38	++	++	++	++	++	+-	

Table S1 Molecula	r Waights and	Solubilitios	of SRE-HDA	and SRE-DDA
I able SI. Molecula	i weights and	a solubilities	UI 3DF-HPA	anu Sor-DPA.

^{*a*} Relative to polystyrene standard, using DMF as the eluent. ^{*b*} Qualitative solubilities were tested with 10 mg of polymers in 1mL of solvent. ++, soluble at room temperature; +-, partially soluble; --, insoluble even on heating.

	1 1			
			_	
Sample	T_g (°C) ^a	<i>T</i> _{d5%} (°C) ^b	<i>T</i> _{d10%} (°C) ^b	 Char yield (wt %) ^c
SBF-HPA	254	427	458	71
SBF-DPA	270	433	507	72

Table S2. Thermal properties of SBF-HPA and SBF-DPA.

 $^{\it o}$ Obtained at the baseline shift in the second heating DSC traces, with a heating rate of 10 °C/min under N_2.

^b Decomposition temperature at which a 5 or 10% weight loss was recorded *via* TGA at a heating rate of 10 °C/min.

^c Residual weight percentage at 800 °C in N₂.