Supplementary Information

Controllable synthesis of Ag/AgCl@MIL-88A via in-situ growth method

for morphology-dependent photocatalytic performance

Wubin Wu^{a‡}, Jingchao Wang^{a‡}, TianyongZhang^{a,b,c*}, Shuang Jiang^{a*}, Xiaoyuan Ma^a,

Guanghui Zhang^a, Xia Zhang^a, Xingwei Chen^a and Bin Li^{a,c*}

^a Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China

^b Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072, China

^c Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354 (P.R. China)

Fig. S1 XRD patterns of different-shaped MIL-88A

Fig. S2 SEM images of different shaped MIL-88A, (a) and (b): I-MIL-88A, (c) and (d): m-MIL-88A; (e) and (f): s-MIL-88A

Fig. S3 EDS spectroscopy of the s-ACML nanocomposite

Fig. S4 Photocatalytic degradation curves of RhB with pure MIL-88A

Fig. S5 (a) SEM image of the s-ACML nanocomposite, (b) FT-IR spectra of s-ACML before and after photocatalytic reaction

Fig. S6 (a) SEM image of the m-ACML nanocomposite, (b) FT-IR spectra of m-ACML before and after photocatalytic reaction

Fig. S7 (a) SEM image of the I-ACML nanocomposite, (b) FT-IR spectra of I-ACML before and after photocatalytic reaction

Fig.S8 The Tauc plots of the samples

Fig. S9 Mott-Schottky plot of the as-prepared s-MIL-88A

Fig. S10 Mott-Schottky plot of the as-prepared s-ACML

Fig. S11 Mott-Schottky plot of the as-prepared m-ACML

Fig. S12 Mott-Schottky plot of the as-prepared I-ACML

Element	Element	Wt.%	A + cm (9/)	Atom %
line	(Wt.%)	Error	Atom (%)	Error
СК	88.72	+/-0.87	93.77	+/- 0.92
ОК	6.71	+/-0.45	5.32	+/- 0.36
CI K	0.32	+/-0.05	0.11	+/- 0.02
Fe K	2.66	+/-0.37	0.61	+/- 0.08
Ag L	1.59	+/-0.28	0.19	+/- 0.03
Total	100		100	

Table S1 SEM mapping element content ratio and error of s-ACML

Table S2 Physicochemical parameters of different ACML composites

Samples	BET (m² g- ¹)	Pore volume (cm ³ •g ⁻¹)	Pore diameter (nm)	Ag NPs mass ratio (wt%)	Fe mass ratio (wt%)
s-ACML	5.18	0.022	31.26	3.48	25.07
m-ACML	9.06	0.033	18.38	4.39	21.78
I-ACML	14.73	0.050	21.63	2.32	20.69