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Materials and Measurements. All reagents and chemicals were purchased from commercial 

sources and used without further purification. 1H NMR spectra were measured on a Bruker AM 

400 spectrometer. Mass spectrometry (MS) spectra were obtained on an electrospray ionization 

(ESI) mass spectrometer (LCQ fleet, Thermo Fisher Scientific) for ligands and high-resolution 

electrospray mass spectra (HRMS) was measured on G6500 from Agilent for complexes. 

Elemental analyses for C, H, and N were performed on an Elementar Vario MICRO analyzer. TG-

DSC measurements were carried out on a DSC 823e analyzer (METTLER). Absorption and 

photoluminescence spectra were measured on a UV-3100 spectrophotometer and a Hitachi F-4600 

photoluminescence spectrophotometer, respectively. The decay lifetimes were measured with an 

Edinburgh Instruments FLS-920 fluorescence spectrometer in degassed CH2Cl2 solution at room 

temperature. The luminescence quantum efficiencies were calculated by comparison of the 

emission intensities (integrated areas) of a standard sample (fac-Ir(ppy)3) and the unknown 

sample.1
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X-ray Crystallography. The single crystals of complexes were carried out on a Bruker SMART 

CCD diffractometer using monochromated Mo K radiation ( = 0.71073 Å) at room temperature. 

Cell parameters were retrieved using SMART software and refined using SAINT 2 on all observed 

reflections. Data were collected using a narrow-frame method with scan widths of 0.30° in  and 

an exposure time of 10 s/frame. The highly redundant data sets were reduced using SAINT and 

corrected for Lorentz and polarization effects. Absorption corrections were applied using 

SADABS 3 supplied by Bruker. The structures were solved by direct methods and refined by full-

matrix least-squares on F2 using the program SHELXS-97.4 The positions of metal atoms and 

their first coordination spheres were located from direct-methods E-maps; other non-hydrogen 

atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles 

and, during the final cycles, refined anisotropically. Hydrogen atoms were placed in calculated 

position and refined as riding atoms with a uniform value of Uiso.

Details of cyclic voltammetry measurements and theoretical calculations. Cyclic voltammetry 

measurements were conducted on a MPI-A multifunctional electrochemical and chemiluminescent 

system (Xi’an Remex Analytical Instrument Ltd. Co., China) at room temperature, with a polished 

Pt plate as the working electrode, platinum thread as the counter electrode and Ag-AgNO3 (0.1 M) 

in CH2Cl2 as the reference electrode, tetra-n-butylammonium perchlorate (0.1 M) was used as the 

supporting electrolyte, using Fc+/Fc as the internal standard, the scan rate was 0.1 V/s. We 

perform theoretical calculations employing Gaussian09 software with B3LYP function.5 The basis 

set of 6-31G(d, p) was used for C, H, N, O, and F atoms while the LanL2DZ basis set was 

employed for Ir atoms.6 The solvent effect of CH2Cl2 was taken into consideration using 

conductor like polarizable continuum model (C-PCM).7

OLEDs fabrication and measurement. All OLEDs were fabricated on the pre-patterned ITO-

coated glass substrate with a sheet resistance of 15 Ω/sq. The deposition rate for organic 

compounds is 1-2 Å/s. The phosphor and the host TCTA or 2,6DCzPPy were co-evaporated to 

form emitting layer from two separate sources. The cathode consisting of LiF / Al was deposited 

by evaporation of LiF with a deposition rate of 0.1 Å/s and then by evaporation of Al metal with a 

rate of 3 Å/s. The characteristic curves of the devices were measured with a computer which 

controlled KEITHLEY 2400 source meter with a calibrated silicon diode in air without device 



S3

encapsulation. On the basis of the uncorrected PL and EL spectra, the Commission Internationale 

de l’Eclairage (CIE) coordinates were calculated using a test program of the Spectra scan PR650 

spectrophotometer.

Table S1. The crystallographic data of (4tfmpq)2Ir(tBudpdtc) and (4tfmpq)2Ir(tBuCzdtc). 

(4tfmpq)2Ir(tBudpdtc) (4tfmpq)2Ir(tBuCzdtc)

Formula C51H42F6IrN5S2 C51H40F6IrN5S2

Formula weight 1095.21 1093.20

T (K) 296(2) 296(2)

Wavelength (Å) 0.71073 0.71073

Crystal system Triclinic Monoclinic

Space group P-1 C2/c

a (Å) 8.2104(6) 45.967(7)

b (Å) 14.8349(11) 18.658(3)

c (Å) 20.6198(15) 21.437(3)

α (deg) 74.7250(10) 90.00

β (deg) 79.5860(10) 91.993(2)

γ (deg) 77.3990(10) 90.00

V (Å3) 2344.1(3) 18374(5)

Z 2 16

ρcalcd (g/cm3) 1.552 1.581

μ (Mo Kα) (mm-1) 3.002 3.064

F (000) 1092 8704

Range of transm 

factors (deg)
1.569-25.010 0.886-25.010

Reflns collected 13231 66875

Unique(Rint) 8220(0.0267) 16161(0.0804)

R1
a, wR2

b
 [I > 2s(I)] 0.0469, 0.1150 0.0454, 0.1105

R1
a, wR2

b (all data) 0.0570, 0.1225 0.0878, 0.1388
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GOF on F2 1.054 1.059

CCDC 1832350 1832348

R1
a = ||Fo|  |Fc||/Fo|. wR2

b = [w(Fo
2  Fc

2)2/w(Fo
2)]1/2.

Table S2. Selected bond lengths and angles of (4tfmpq)2Ir(tBudpdtc) and 

(4tfmpq)2Ir(tBuCzdtc). 

Bond length (4tfmpq)2Ir(tBudpdtc) (4tfmpq)2Ir(tBuCzdtc)

Selected Bonds Bond length (Å) Bond length (Å)

Ir-C(1) 2.002(7) 2.029(7)

Ir-C(2) 2.009(7) 1.994(7)

Ir-N(1) 2.034(6) 2.052(7)

Ir-N(2) 2.054(6) 2.034(6)

Ir-S(1) 2.4524(19) 2.4660(19)

Ir-S(2) 2.4689(18) 2.4201(19)

S(1)-C(3) 1.699(7) 1.704(7)

S(2)-C(3) 1.710(7) 1.710(7)

C(3)-N(3) 1.358(9) 1.361(9)

Selected angles (°) (°)

C(1)-Ir-N(1) 79.0(3) 78.4(3)

C(2)-Ir-N(2) 78.3(3) 78.5(3)

S(1)-Ir-S(2) 71.60(6) 70.86(6)

S(2)-C(3)-S(1) 115.2(4) 112.2(4)

C(3)-S(2)-Ir 86.2(2) 89.2(3)

C(3)-S(1)-Ir 87.0(2) 87.8(2)

N(3)-C(3)-S(1) 122.8(5) 125.3(5)
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Table S3. The electronic cloud density distribution.
Composition (%)

Complex Orbital Energy/eV  
(Calculated)

Energy/eV
(Experimental) 4tfmpqz Ir Ancillary 

Ligands

HOMO -5.67 -5.49 43.26 47.54 9.20
(4tfmpq)2Ir(tBudpdtc)

LUMO -2.58 -3.21 91.79 4.11 4.10

HOMO -5.78 -5.58 43.85 47.92 8.23
(4tfmpq)2Ir(tBuCzdtc)

LUMO -2.67 -3.21 93.82 3.40 2.78
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Fig. S1 The TG curve of the iridium complexes.
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Fig. S2. Cyclic voltammograms of complexes the iridium(III) complexes.
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Fig. S3 The selected lifetime curves of the iridium(III) complexes in degassed CH2Cl2 solution 

(up: the curves from original data; down: the fitted curves).
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Fig. S4 Current efficiency versus luminance of (4tfmpq)2Ir(tBudpdtc) based devices with 

different doped concentrations: (a) single emitting layer, (b) double emitting layer.
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Fig. S5 Current efficiency versus luminance curves of (4tfmpq)2Ir(tBuCzdtc) based devices 

with different doped concentrations: (a) single emitting layer, (b) double emitting layer.
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