Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Novel Phosphorescent iridium (III) emitters for both vacuum-

deposition and inkjet-printing of OLEDs with exceptionally high

efficiency

Yong-Xu Hu^a, Tong Lin^b, Xin Xia^a, Wan-Ying Mu^b, Yu-ling Sun^b, Wen-Ze He^a, Chang-Ting Wei^b, Dong-Yu Zhang^{b, *}, Xiao Li^{a, *}, and Zheng Cui^b

 ^aSchool of Chemical Engineering, University of Science and Technology Liaoning (USTL), Anshan 114051, People's Republic of China
 ^b Printable electronics research center (PERC), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, China
 * Corresponding authors. E-mails: xiaoli@ustl.edu.cn; (X. Li); dyzhang2010@sinano.ac.cn (D. Zhang).

Contents

Scheme S1 Synthetic routes for (fpbt)₂Ir(acac) and (fpbm)₂Ir(acac).

Figure S1. HRMS, ¹H NMR and ¹³C NMR spectra of fpbt.

Figure S2. HRMS, ¹H NMR and ¹³C NMR spectra of fpbm.

Figure S3. HRMS, ¹H NMR and ¹³C NMR spectra of (fpbt)₂Ir (acac).

Figure S4. HRMS, ¹H NMR and ¹³C NMR spectra of (fpbm)₂Ir (acac).

Figure S5. The EL properties of the $(fpbt)_2Ir(acac)$ -based OLEDs with different doping concentration.

Figure S6. The EL properties of the $(fpbm)_2Ir(acac)$ -based OLEDs with different doping concentration.

Figure S7. a) EL spectra of (fpbt)₂Ir(acac)-doped OLEDs at different voltage and b) EL spectra of (fpbm)₂Ir(acac)-doped OLEDs at different voltage.

Figure S8. EL properties of the 10%-(bt)₂Ir(acac)-doped OLEDs.

Figure S9. $(fpbm)_2Ir(acac)$ -based OLEDs with different processing method: a) EL spectra at 10 V; b) J-V-L characteristic; c) CE and PE versus luminance curves; d) EQE versus luminance curves.

Figure S10. Contact angles (CA) images of water drop on PEDOT: PSS and EMLs with different processing methods.

Table S1. The rheological properties of the solvents and the inks.

 Table S2. Design of OLEDs with different processing method.

Table S3. EL properties of the $(fpbm)_2Ir(acac)$ -based OLEDs with different processing method.

Scheme S1 Synthetic routes for the (fpbt)₂Ir(acac) and (fpbm)₂Ir(acac)

Figure S1 HRMS, ¹H NMR and ¹³C NMR spectra of fpbt.

Figure S2 HRMS, ¹H NMR and ¹³C NMR spectra of fpbm.

Figure S3 HRMS, ¹H NMR and ¹³C NMR spectra of (fpbt)₂Ir (acac).

Figure S4 HRMS, ¹H NMR and ¹³C NMR spectra of (fpbm)₂Ir (acac).

Figure S5 The EL properties of the (fpbt)₂Ir(acac)-based OLED_S with different doping concentration.

Figure S6 The EL properties of the $(fpbm)_2Ir(acac)$ -based OLED_S with different doping concentration.

Figure S7 a) EL spectra of (fpbt)₂Ir(acac)-doped OLEDs at different voltage and b) EL spectra of(fpbm)₂Ir(acac) -doped OLEDs at different voltage.

Figure S8 EL properties of the 10%-(bt)₂Ir(acac)-doped OLEDs.

Figure S9 (fpbm)₂Ir(acac)-based OLEDs with different processing method: a) EL spectra at 10 V; b) J-V-L characteristic; c) CE and PE versus luminance curves; d) EQE versus luminance curves.

Figure S10 Contact angles (CA) images of water drop on PEDOT: PSS and EMLs with different processing methods.

Solvent	Boiling point (°C)	Viscosity(cp)	Surface tension (Mn m ⁻¹)	Density(g cm ⁻³)	Z
PEDOT:PSS	100	7.40	65.7	1.03	5.1
Ethylene glycol	197	14.83	47.9	1.14	2.3
Ink- PEDOT:PSS ^{b)}	-	20.00	52.3	1.13	1.8
Ink-(fpbt)2Ir(acac) °)	-	2.48	26.2	1.03	9.3
Ink-(fpbm) ₂ Ir(acac) ^{d)}	-	2.99	27.1	1.03	7.9
chlorobenzene	132	0.76	33.6	1.11	36.7
Butyl Benzoate	250	2.70	33.4	1.01	8.7

Table S1 The rheological properties of the solvents and the inks.^{a)}

^{a)} Data measured at 25 °C; ^{b)} Ink-PEDOT: PSS : the volume ratio of PEDOT: PSS and ethylene glycol is 1:3; ^{c)} Ink-(fpbt)₂Ir(acac) : the weight ratio of (fpbt)₂Ir(acac) : CDBP is 1:9 in Butyl Benzoate; ^{d)} Ink-(fpbm)₂Ir(acac) : the weight ratio of (fpbm)₂Ir(acac) : CDBP is 1:9 in Butyl Benzoate.

process	PEDOT:PSS	EML(CDBP: (fpbt) ₂ Ir(acac))	EML(CDBP: (fpbm) ₂ Ir(acac))
S+S	Spin-coating ^{a)}	Spin-coating (90:10) ^{C)}	Spin-coating (90:10) ^{C)}
S+P	Spin-coating	Printing (90:10)	Printing (90:10)
P+P	Printing ^{b)}	Printing (90:10) ^{d)}	Printing (90:10) ^{d)}
P+S	Printing	Spin-coating (90:10)	Spin-coating (90:10)

 Table S2 Design of OLEDs with different processing method.

^{a)} Spin-coating PEDOT: PSS: Spin-coating onto the ITO glass substrate and baked in air at 120°C for 10 min; ^{b)} Printing PEDOT: PSS: Printing Ink- PEDOT:PSS onto the ITO glass substrate and baked in air at 120°C for 10 min; ^{c)} Spin-coating EML: Spin-coating EML (the weight ratio of Phosphorescent materials : CDBP is 1:9 in chlorobenzene) onto the PEDOT: PSS and baked in vacuum at 60°C for 15 min; ^{d)} Printing EML: Printing Ink-EML onto the PEDOT: PSS and baked in vacuum at 60°C for 15 min.

Table S3 EL properties of the $(fpbm)_2Ir(acac)$ -based OLEDs with different processing method.

Methods	V _{turnon} (V) ^{a)}	$L_{max}(cd m^{-2})^{b)}$	EQE (%) °)	CE(cd A ⁻¹) ^{c)}	PE (lm W ⁻¹) ^{c)}	CIE (x,y) ^{d)}
S +S	4.5	7047	1.6/0.2/0.9	4.4/0.6/2.5	1.5/0.3/1.1	(0.28, 0.49)
S+P	4.0	8096	5.3/3.1/4.5	11.5/11.0/9.2	7.3/6.9/6.5	(0.26, 0.49)
P+P	4.5	5648	3.8/3.3/3.7	10.2/8.8/9.6	5.4/4.9/4.8	(0.27, 0.49)
P+S	4.0	5560	3.6/3.1/3.4	9.9/8.5/9.4	4.5/4.2/4.1	(0.28, 0.49)

^{a)} Turn-on voltage at 1 cd m⁻²; ^{b)} Maximum luminance; ^{c)} Order of measured efficiency values: maximum, then values at 100/1000 cd m⁻² for device; ^{d)} Commission International de I'Eclairage (CIE) coordinate measured at 10V.