Electronic Supporting Information

Near-Infrared-Laser-Driven Robust Glass-Ceramic-Based Upconverted Solid-State-Lighting

Jiangkun Chen,^{a,c,d} Yongzhao Peng,^b Xinyue Li,^b Wu Chen,^{a,c,d} Hai Huang,^{a,c,d} Lin Lin,^{a,c,d}

Daqin Chen^{*,a,b,c}

^aCollege of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, Fujian 350117, China

^bCollege of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

^cFujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, Fujian, 361005, China

^dFujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, Fujian, 350117, China

*Corresponding author, E-Mail: <u>dqchen@fjnu.edu.cn</u> (D. Q. Chen)

Figure S1 Dependence of CIE color coordinates for a series of Yb/Tm/Er (20/0.25/x, mol%) doped GCs with different Er^{3+} contents: (a) α -NaYF₄ GC (x=0.25, 0.35, 0.45, 0.50), (b) β -NaYF₄ GC (x=0.06, 0.09, 0.12, 0.25).

Figure S2 Log-log plots of UC intensity versus NIR excitation power for the investigated GC samples: (a) Yb/Er doped GC and (b) Yb/Tm doped GC. (c) Schematic illustration of energy transfer processes to achieve blue, green and red UC emissions in Yb/Tm/Er doped GCs.

Figure S3 Laser power density dependent UC emission spectra for (a) Yb/Tm/Er (20/0.25/0.45

mol%) doped α -NaYF₄GC and (b) Yb/Tm/Er (20/0.25/0.12 mol%) doped β -NaYF₄GC.

Figure S4 Variation of (a) CCT and (b) CIE color coordinates for the GC-based (Yb/Tm/Er doped α -NaYF₄GC or β -NaYF₄GC) UC lighting with increase of incident laser powder density.

Figure S5 Variation of (a) UC emission spectra and (b) CIE color coordinates for the GC-based UC lighting with increase of α -NaYF₄GC thickness. The Yb/Er doped α -NaYF₄GC @ Yb/Tm doped β -NaYF₄GC stacking structure (denoted as Yb/Er@Yb/Tm) is used as color converter.

Figure S6 Laser powder dependent UC emission spectra for the constructed GC-based UC lighting with increase of α -NaYF₄ GC thickness: (a) 1.4 mm, (b) 1.8 mm and (c) 3.7 mm. The Yb/Tm doped β -NaYF₄ GC @ Yb/Er doped α -NaYF₄ GC stacking structure (denoted as Yb/Tm@Yb/Er) is used as color converter.

Figure S7 Dependence of red/green/blue emission intensities and the corresponding intensity percentage for the constructed GC-based UC lighting with increase of α -NaYF₄GC thickness: (a) 1.4 mm, (b) 1.8 mm and (c) 3.7 mm. The Yb/Tm doped β -NaYF₄GC @ Yb/Er doped α -NaYF₄GC stacking structure (denoted as Yb/Tm@Yb/Er) is used as color converter.

Figure S8 Laser power dependent UC emission spectra for the (a) Yb/Er doped α -NaYF₄ GC and (c) β -NaYF₄ GC samples. (b, d) The calculated FIR value between ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ transition (I₅₂₀) and ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ one (I₅₄₀) versus laser power density.

Figure S9 Laser (230 W/cm²) irradiation duration dependent (a) CCT, (b) luminous flux, (c) CIE color coordinates, (d, e) UC emission spectra and (f) FIR value for the constructed GC-based UC lighting. The Yb/Tm doped β -NaYF₄ GC @ Yb/Er doped α -NaYF₄ GC stacking structure (denoted as Yb/Tm@Yb/Er) is used as color converter.