S1. Quantitative formulas to describe temperature-dependent luminescence

The luminescence lifetime is expressed as follows.¹

$$\tau = \frac{1}{k_r + k_{nr}}$$

 k_{nr} is related to T via the Arrhenius equation.

$$k_{nr} \sim e^{(-\Delta E/kT)}$$

where ΔE is the energy gap between the lowest level of the excited state and the overlap point to a possible non-radiative decay state. In many cases of lanthanide(III) complexes, the non-radiative decay states corresponding to the T₁ states of organic ligands. The equations of temperature-dependent luminescence intensity of lanthanide(III) complexes have also been reported.

S2. Temperature-dependent photophysical properties of Ln(III) compounds

Fig. S1 Eu(III) compounds

Table S1 Temperature-dependent	photophysica	al data of Eu(II	I) compounds
--------------------------------	--------------	------------------	--------------

Fig. S1	medium	$\Phi_{\pi\pi}$ /%	TR	Sensitivity	Ref
1	Toluene	-	273K-373K	-	95
2	LB	-	290K-370K	-	98
3	PViCl	-	278K-333K	4.42 %/ °C	96
Α	(SS)	0.5	300K-420K	-	107
4		(82.0)			
E	(SS)	0.6	300K-420K	-	107
5		(85.0)			
(S	(SS)	0.6	300K-420K	-	107
0		(86.0)			
7	Toluene	-	273K-333K	-	123
8	Toluene	-	273K-333K	-	123
9	Toluene	7.05	-	-	124
	(SS)	17.6	100K-300K	0.36 % / K	
10	Toluene	29.6	-	-	124
	(SS)	94.9	100K-300K	0.31 % / K	
11	Toluene	45.3	-	-	124
	(SS)	73.1	100K-300K	0.74 % / K	
12	CB	13-27	293K-373K	1.5-1.6 % / K	136
13	(SS)	(22.7)	77K, 298K	-	135

LB: LB film mixed with poly-(N-dodecylacrylamide), PViCl: Poly(vinylidene chlorideco-acrylonitrile), SS: Solid state, TR: temperature range, CB: Chlorobenzene, $\Phi_{\pi\pi}$ is emission quantum yield excited by ligands. Value in brackets ($\Phi_{\pi\pi}$) is emission quantum yield excited by lanthanide ions.

Fig. S2 Tb(III) compounds

Fig S2	medium	$\sigma / \%$	TR	Sensitivity	Ref
1 19. 02		(1.7)	2028 2228	1.91.0//00	100
1	acetone-d ₆	(1./)	283K-323K	1.81 %/ °C	109
2	acetone-d ₆	(59)	283K-323K	0.45 %/ °C	109
2	acetone-d ₆	(30)	283K-323K	1.90 %/ °C	109
5	(SS)	9.2	150K-400K		165
4	(Film)	-	143K-253K	3.3 µs/ K	112
5	BA	-	273K-298K	-	113
6	PVA	22	293K-338K	3.80 %/ °C	114
7	(SS)	66	-	-	115
8	(SS)	71	340K-400K	-	115
9	(SS)	39	340K-400K	-	115
10	(SS)	2.4-31	240K-360K	-	126
11	(SS)	10	150K-400K	-	165
12	(SS)	11	150K-400K	-	165
13	(SS)	9.7	150K-400K	-	165
14	(SS)	17	150K-400K	-	165
16	(SS)	35	150K-400K	-	165

Table S2 Temperature-dependent photophysical data of Tb(III) compounds

BA: buffered aqueous solution, PVA: Poly(vinyl alcohol), SS: Solid state, TR: temperature range, $\Phi_{\pi\pi}$ is emission quantum yield excited by ligands. Value in brackets $(\Phi_{\pi\pi})$ is emission quantum yield excited by lanthanide ions.

Fig. S3 Eu(III)-Tb(III) compounds

Fig. S3	medium	$\Phi_{\pi\pi}$ /%	TR	Sensitivity	Ref
1	(SS)	-	100K-450K	2.2 %/ K	128
2	(SS)	-	200K-360K	1.52 %/ K	129
3	(Film)	-	100K-400K	0.92 %/ K	140
4	(SS)	-	200K-450K	0.83 %/ °C	139
5	(SS)	-	50K-225K	0.68 %/ K	148
6	(SS)	-	40K-300K	0.11-0.17 %/ K	155

Table S3 Temperature-dependent photophysical data of Eu-Tb(III) compounds

SS: Solid state, TR: temperature range, $\Phi_{\pi\pi}$ is emission quantum yield excited by ligands.

 $X = CH_3$ $X = CF_3$ Compound (1) Compound (2)

Compound (3)

Compound (4) Compound (5)

Figur

e S4. Sm(III), Yb(III) and Dy(III) compounds.

Table S4 Temperature-dependent photophysical data of Sm(III), Yb(III) and Dy(III) compounds.

Fig. S4	medium	$\Phi_{\pi\pi}$ /%	TR	Sensitivity	Ref
1	HTPB	-	293K-423K	1.26 %/ K	119
2	HTPB	-	200K-383K	1.37 %/ K	119
3	PMMA	0.9	178K-378K	-	121
4	MG	6.2	77K-400K	6.0 %/ °C	122
5	MG	9.1	-	-	122
6	MG	6.8	77K-400K	3.8 %/ °C	122
7	MG	9.2	-	-	122
8	(SS)	-	298K-473K	-	137

HTPB: hydroxyl-terminated polybutadiene, PMMA: Polymethyl methacrylate, MG: methanol/glycerol mixtures, SS: solid state, $\Phi_{\pi\pi}$ is emission quantum yield excited by ligands.