Electronic Supplementary Information (ESI) for

Exploring orientationally aligned anisotropic large spin molecules with unusual long-distance intermolecular ferromagnetic interactions[†]

Takuo Minato,^a Yusuke Ohata,^a Kazuyuki Ishii,^b Kazuya Yamaguchi,^a Noritaka Mizuno^a

and Kosuke Suzuki * a,c

^a Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: ksuzuki@appchem.t.u-tokyo.ac.jp

^b Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

^c Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

01	2.142	O24	1.981	
O2	2.061	O25	1.975	
03	0.808	O26	1.881	
O4	0.855	O27	1.867	
05	0.776	O28	1.950	
O6	0.823	O29	1.899	
07	1.783	O30	1.895	
O8	1.708	O31	1.882	
09	1.736	032	1.685	
O10	1.847	O33	1.613	
O11	1.803	O34	1.618	
O12	1.653	Si1	3.858	
O13	2.011	V1	2.955	
O14	2.093	W1	6.182	
O15	1.990	W2	6.169	
O16	2.132	W3	5.910	
O17	2.044	W4	6.030	
O18	2.123	W5	6.015	
O19	2.258	W6	5.976	
O20	1.859	W7	5.885	
O21	1.849	W8	5.744	
O22	1.964	W9	5.832	
O23	1.992			

Table S1. BVS values of oxygen, silicon, vanadium, manganese, and tungsten atoms of I.

01	2.050	033	1.750	O65	1.778
02	2.041	O34	1.897	O66	1.887
O3	1.876	O35	1.834	O67	1.759
O4	1.827	O36	1.877	O68	1.944
05	1.811	O37	2.035	O1H	1.160
O6	1.861	O38	2.045	О2Н	1.160
O7	1.731	O39	1.864	Si1	3.987
08	1.698	O40	1.830	Si2	3.978
09	1.726	O41	1.676	V1	2.929
O10	1.689	O42	1.952	Mn1	2.976
O11	1.712	O43	1.698	Mn2	3.001
O12	1.712	O44	2.041	Mn3	2.974
O13	1.981	O45	1.717	Mn4	2.976
O14	2.051	O46	1.981	W1	6.102
O15	1.918	O47	1.685	W2	6.114
O16	1.967	O48	2.024	W3	6.039
O17	2.000	O49	1.726	W4	5.986
O18	2.051	O50	1.934	W5	5.951
O19	1.911	O51	1.759	W6	5.983
O20	2.005	O52	1.971	W7	6.073
O21	2.009	O53	2.006	W8	6.073
O22	2.036	O54	1.933	W9	6.008
O23	1.952	O55	2.002	W10	6.042
O24	2.008	O56	2.053	W11	6.017
O25	2.019	O57	1.989	W12	6.066
O26	1.978	O58	1.980	W13	5.982
O27	2.009	O59	2.023	W14	6.030
O28	1.970	O60	1.969	W15	6.019
O29	1.712	O61	2.021	W16	6.021
O30	1.922	O62	1.954	W17	6.079
031	1.694	O63	1.662	W18	6.019
032	1.978	O64	1.941		

Table S2. BVS values of oxygen, silicon, vanadium, manganese, and tungsten atoms of II-a.

01	2,053	033	1 783	065	1 937
02	2.021	034	1.649	O66	1.722
03	1 882	035	2 057	067	1 722
04	1.876	036	2.061	068	1 708
05	1.851	037	1 846	01H	1 163
06	1 898	038	1.815	02H	1 157
07	1 759	039	1 844	Sil	3 997
08	1.722	040	1 918	Si2	3 967
09	1.754	041	1 680	V1	2.985
010	1 694	042	1.745	Mn1	2.905
011	1 698	043	1 745	Mn2	3 003
012	1 745	044	1 703	Mn3	2 976
012	2 022	045	1 703	Mn4	2.970
014	2.022	046	1.754	W1	6 121
015	1 979	047	2 003	W2	6.170
016	1.975	048	2.009	W3	6 108
017	1 990	049	1 968	W4	6.037
018	2 098	019	2 014	W5	6.010
019	1 940	051	2.013	W6	6 113
020	2 031	052	2.015	W7	5 990
021	2.031	052	1 957	W8	6.065
022	1 974	054	2 024	W9	6.081
022	2 029	055	2.021	W10	6 109
024	2.029	055	1 952	W10	6 163
025	2.010	057	2 046	W12	6.040
025	2.001	058	2.040	W12	6.063
020	2.019	058	1 984	W13	6.062
028	1 956	059	2 024	W15	6.063
028	1.950	061	2.024	W15	6.094
029	1.000	062	1 966	W17	6 078
031	1.243	063	1.900	W18	6 147
031	1.709	003	1.74/	VV 1 0	0.14/
032	1./08	004	1.901		

Table S3. BVS values of oxygen, silicon, vanadium, manganese, and tungsten atoms of II-b.

II-a		II-b	
V1-019	2.072	V1-019	2.071
V101	1.981	V101	1.964
V1-O2	1.985	V1-O2	1.970
V1-054	2.077	V1-053	2.081
V1-O37	1.967	V1-O35	1.972
V1-O38	1.983	V1-O36	1.968
Mn1-O20	2.162	Mn1-O20	2.162
Mn1–O1H	1.958	Mn1–O1H	1.965
Mn1–O3	1.906	Mn1–O3	1.885
Mn1–O4	1.898	Mn1–O4	1.892
Mn1-O37	1.897	Mn1–O36	1.909
Mn2–O21	2.153	Mn2–O21	2.150
Mn2–O1H	1.964	Mn2–O1H	1.956
Mn2–O5	1.890	Mn2–O5	1.892
Mn2–O6	1.901	Mn2–O6	1.895
Mn2–O38	1.897	Mn2–O35	1.909
Mn3-055	2.147	Mn3-055	2.155
Mn3–O2H	1.968	Mn3–O2H	1.966
Mn3–O2	1.904	Mn3–O1	1.906
Mn3–O39	1.902	Mn3–O39	1.904
Mn3040	1.898	Mn3–O40	1.887
Mn4–O53	2.148	Mn4–O54	2.138
Mn4–O2H	1.956	Mn4–O2H	1.959
Mn4–O1	1.910	Mn4–O2	1.910
Mn4–O35	1.894	Mn4–O37	1.909
Mn4–O36	1.908	Mn4–O38	1.924

Table S4. Selected bond lengths (Å) in **II-a** and **II-b**. The Jahn-Teller axes are marked in bold in the table and are represented as green bonds in the ball and stick representation of $\{VMn_4\}$ core.

	Bond lengths (Å)		
_	II-a	II-b	
V–O(–Mn)	1.979	1.969	
V–O(–Si)	2.075	2.076	
Mn–O(–V)	1.902	1.909	
Mn–O(–Mn)	1.962	1.962	
Mn-O(-Si)	2.153	2.151	
$V \cdots Mn$	3.507	3.501	
$Mn \cdots Mn$	3.538	3.530	
	Bond angles (°)		
	II-a	II-b	
∠V–O–Mn	129.29	129.14	
∠Mn–O–Mn	128.77	128.23	

Table S5. Average bond lengths (Å) and bond angles (°) in the $\{VMn_4\}$ cluster in II-a and II-b.

	II-a	II-b	III
Number of molecular orientation in the crystal	1	2	1
Spin ground state	9	9	11/2
Intermolecular ferromagnetic interaction	yes	no	no

Table S6. Relationships between molecular orientations and magnetic properties of II-a, II-b, and III.

Fig. S1 ORTEP representations of the anion part of (a) I, (b) II-a, and (c) II-b with thermal ellipsoids drawn at the 50% probability level.

Fig. S2 (a) Temperature dependence of χT for **I** under the applied dc magnetic field of 0.1 T and (b) frequency dependence of the ac magnetic susceptibilities of χ' and χ'' for **I** under the applied dc magnetic field of 0.1 T.

Fig. S3 Positive-ion CSI mass spectra of the polycrystalline sample of (a) I, (b) II-a, and (c) II-b in 1,2-dichloroethane. Insets: (a) spectra in the range of m/z 3310–3350 and 6378–6458 and simulated patterns for [TBA₉H₆Si₂W₁₈O₆₆V]²⁺ (m/z 3330.2) and [TBA₈H₆Si₂W₁₈O₆₆V]⁺ (m/z 6418.0), (b) spectra in the range of m/z 3455–3487 and 6667–6730 and simulated patterns for [TBA₉H₂Si₂W₁₈O₇₀VMn₄]²⁺ (m/z 6497.7), (c) spectra in the range of m/z 3450–3490 and 6667–6730 and simulated patterns for [TBA₈H₂Si₂W₁₈O₇₀VMn₄]⁺ (m/z 6697.7), (c) spectra in the range of m/z 3450–3490 and 6667–6730 and simulated patterns for [TBA₈H₂Si₂W₁₈O₇₀VMn₄]⁺ (m/z 6697.7).

Fig. S4 Temperature dependences of χT for **II-b** under the applied dc field of 0.1 T. Inset: Temperature dependences of χT for **II-b** under various external dc magnetic fields. The solid line represents the best fit adopting the Heisenberg–Dirac–Van Vleck Hamiltonian.

Fig. S5 Temperature dependences of the inverse magnetic susceptibilities (χ^{-1}) for (a) **II-a** and (b) **II-b**. Solid lines represent the best fits for the Curie–Weiss law ($\chi = C/(T - \theta)$) in a temperature range of 100–300 K with (a) C = 13.97 cm³ K mol⁻¹, $\theta = 26.74$ K and (b) C = 13.09 cm³ K mol⁻¹, $\theta = 30.77$ K.

Fig. S6 Frequency dependence of the ac magnetic susceptibilities of a) χ' and b) χ'' for **II-a** under the zero dc magnetic field. c) Plots of relaxation time (τ) versus T^{-1} for **II-a**. The solid line represents the best fit with the Arrhenius law (ln τ ($\tau = \tau_0 \exp(U_{\text{eff}}/k_{\text{B}}T)$) vs T^{-1}) at thermally activated regime, showing the energy barriers for magnetization reversal (U_{eff}) of 26.7 K.

Fig. S7 Frequency dependence of the ac magnetic susceptibilities of a) χ' and b) χ'' for **II-b** under the zero dc magnetic field. c) Plots of relaxation time (τ) versus T^{-1} for **II-b**. The solid line represents the best fit with the Arrhenius law (ln τ ($\tau = \tau_0 \exp(U_{\text{eff}}/k_{\text{B}}T)$) vs T^{-1}) at thermally activated regime, showing the energy barriers for magnetization reversal (U_{eff}) of 26.9 K.

Fig. S8 Temperature dependences of χT for II-a under various external dc magnetic fields. Inset: Enlarged view of temperature dependences of χT .

Fig. S9 Low temperature magnetization data for **II-b**. (a) The black solid line represents the Brillouin function with $S_T = 9$. (b) The colored solid lines represent the best fits adopting the following Hamiltonian: $H = D(S_z^2 - S(S+1))/3 + E(S_x^2 - S_y^2) + \mu_B g \mathbf{SH}$. The best fits parameters, which were obtained by the PHI program, were as follows: $D = -0.29 \text{ cm}^{-1}$, $|E| = 1.53 \times 10^{-5}$, and g = 1.99, supporting the large uniaxial magnetic anisotropy (D < 0, $|E/D| \sim 10^{-5}$).

Fig. S10 Temperature dependence of χT for **II-a** under the applied dc field of 0.1 T. The solid line represents the best fit adopting the Heisenberg–Dirac–Van Vleck Hamiltonian.

Fig. S11 Positive-ion CSI mass spectra of the synthetic solution of V-containing POM under the air. Signal sets at m/z 3270, 3391, 3492, and 3557 were assignable to $[TBA_9HSi_2W_{18}O_{62}]^{2+}$ (m/z 3270.2), $[TBA_{10}Si_2W_{18}O_{62}]^{2+}$ (m/z 3391.0), $[TBA_5H_2SiW_9O_{34}V^{4+}]^+$ (m/z 3491.9), and $[TBA_5SiW_9O_{35}V^{4+}_2]^+$ (m/z 3556.8). Signal sets at m/z 3450 and 3650 could not be assigned.

Fig. S12 Cyclic voltammogram of I in acetonitrile in the range of (a) -1.95-1.75 V and (b) 0.05-1.25 V (0.5 mM I, 100 mM TBAClO₄).

Fig. S13 Low temperature magnetization data for (a) II-a and (b) II-b.