Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting information

Gold Nanoparticles Decorated Bismuth Sulfide Nanorods for Enhanced Photoelectrochemical Hydrogen Production

Palyam Subramanyam, T. Vinodkumar, Melepurath Deepa, Ch. Subrahmanyam*

Scheme S1. Procedure for the synthesis of AuNPs/Bi₂S₃NRs composite film.

Figure S1. LSV plots of Bi₂S₃NRs and AuNPs/Bi₂S₃NRs as working electrodes, 0.1 M Na₂S and 0.1 M Na₂SO₃ as an electrolyte solution and Pt as a counter electrode under chopped light illumination.

Figure S2. PEC measurements showing the evolution of H₂ bubbles at the Pt counter electrode of AuNPs/Bi₂S₃NRs photoanode under solar light irradiation.

Figure. S3 CV plots of (a) Bi₂S₃NRs and (b) AuNPs in a 0.1 M KOH electrolyte, with Pt as CE, and Ag/AgCl/KCl as the reference.

Calculations of reduction and oxidation peak potentials and Fermi levels:

```
For Bi<sub>2</sub>S<sub>3</sub>:
```

```
 \begin{split} & \mathsf{E}_{\mathsf{CB}} = -1.04 \text{ vs } \mathsf{Ag/AgCl/KCl} \\ & \mathsf{E}_{\mathsf{NHE}} = -1.04 \text{ V} + 0.2 \text{ V} (\mathsf{E}^\circ \text{ of } \mathsf{Ag/Ag^+}) = -0.84 \text{ V} \\ & \mathsf{We} \text{ converted V (volts) into eV (electron volts),} \\ & \mathsf{Therefore } \mathsf{E}_{\mathsf{red}} = -4.5 \text{ eV (0 V vs } \mathsf{NHE}) - (-0.84 \text{ V}) = -3.66 \text{ eV (CB)} \\ & \mathsf{This value is equal to the CB or LUMO position of Bi_2S_3. Then the VB or the HOMO position of Bi_2S_3 was obtained by the addition of the optical bandgap energy value to the CB energy. \\ & \mathsf{E}_{\mathsf{red}} = -3.66 \text{ eV } + (-1.58 \text{ eV}) = -5.24 \text{ eV vs } \mathsf{NHE} (\mathsf{VB}) \end{split}
```

For AuNPs: $E_{vb} = 0.361 V \text{ vs Ag/AgCl/KCl}$ $E_{NHE} = 0.361 V + 0.2 V (E^{\circ} \text{ of Ag/Ag}^{+}) = 0.558 V$ $E_{F} = -4.5 \text{ eV} - (+ 0.558 V) = -5.058 \text{ eV}$

Photochemical possible reaction mechanism

The possible photoreactions at the AuNPs/Bi₂S₃NRs photoanode and Pt CE respectively are summarized as follows

$Au/Bi_2S_3 + hv$		Au*-Bi ₂ S ₃ *	(1)
Au*- Bi ₂ S ₃ *	>	Au ⁺ - Bi ₂ S ₃ (e ⁻ _{CB})	(2)
$SO_3^{2-} + H_2O + 2h_{VB}^+$	>	SO ₄ ²⁻ + 2H ⁺	(3)
2S ²⁻ + 2h ⁺ _{VB}	>	S ₂ ²⁻	(4)
$SO_3^{2-} + S_2^{2-}$	>	S ₂ O ₃ ²⁻ + S ²⁻	(5)
SO ₃ ²⁻ + S ²⁻ + 2h ⁺ _{VB}		S ₂ O ₃ ²⁻	(6)
2H ⁺ + 2e ⁻ _{CB}	→	H ₂	(7)