Supporting Information

Homoleptic platinum(II) complexes with pyridyltriazole ligands:

Excimer-forming phosphorescent emitters for solution-processed OLEDs

Melissa T. Walden,^a Piotr Pander,^b Dmitry Yufit,^a Fernando B. Dias^{*b} and J. A. Gareth Williams^{*a}

 ^a Department of Chemistry and ^b Department of Physics, Durham University, Durham, DH1 3LE, UK.
*E-mails: j.a.g.williams@durham.ac.uk f.m.b.dias@durham.ac.uk

1. Crystallography

Table S1	Crystal data	and structure ref	inement parameters
----------	--------------	-------------------	--------------------

Identification code	HL^1	PtL_{2}^{1}	PtL ² ₂
Empirical formula	$C_{17}H_{18}N_4$	C34H34N8Pt	C54H58N8Pt
Formula weight	278.35	753.81	1014.17
Temperature/K	120.0	120.0	120.0
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P2_1/n$	$P2_1/c$	P-1
a/Å	5.9123(6)	11.6673(5)	6.5952(3)
b/Å	13.2287(13)	5.5870(3)	10.7367(5)
c/Å	18.6718(19)	21.8713(10)	16.1585(8)
α/°	90	90	88.6300(17)
β/°	98.757(4)	101.0279(15)	83.5014(17)
γ/°	90	90	85.8827(17)
Volume/Å ³	1443.3(3)	1399.36(12)	1133.76(9)
Ζ	4	2	1
$\rho_{calc}g/cm^3$	1.281	1.789	1.485
µ/mm ⁻¹	0.079	5.055	3.141
F(000)	592.0	752.0	516.0
Reflections collected	27498	21893	22013
Independent refl., R _{int}	3480, 0.0696	4081, 0.0489	5458, 0.0470
Data/restraints/parameters	3480/0/262	4081/0/199	5458/15/292
Goodness-of-fit on F ²	1.031	1.161	1.067
Final R ₁ indexes [I $\geq 2\sigma$ (I)]	0.0467	0.0377	0.0343
Final wR ₂ indexes [all data]	0.1057	0.0847	0.0729

2. Photophysics in solution

Figure S1 Pots of $1/\tau$ versus concentration for complexes PtL_2^1 and PtL_2^2 .

Figure S2 Photoluminescence spectra of PtL_2^1 and PtL_2^2 at 77 K. Left: at low concentration, showing the unimolecular emission. Right: at high concentration showing the bimolecular emission.

3. Photophysics in solid state

Figure S3 Photoluminescence decay of $PtL_2^1 0.005\%$ (w/w) doped in polystyrene (PS).

Figure S4 Photoluminescence decay of $PtL_2^1 5\%$ (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S5 Photoluminescence decay of $PtL_2^1 20\%$ (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S6 Photoluminescence decay of PtL_2^1 30% (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S7 Photoluminescence decay of $PtL_2^2 0.005\%$ (w/w) doped in polystyrene (PS).

Figure S8 Photoluminescence decay of PtL²₂ 5% (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S9 Photoluminescence decay of PtL_2^2 20% (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S10 Photoluminescence decay of PtL²₂ 30% (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S11 Photoluminescence decay of PtL_2^2 neat film.

Figure S12 Time-resolved photoluminescence spectra of $PtL_2^1 0.005\%$ doped PS film.

Figure S13 Time-resolved photoluminescence spectra of PtL_2^1 5% (w/w) doped in OLED host (mCP:OXD7 80:20).

*Figure S14 Time-resolved photoluminescence spectra of PtL*¹₂ 30% (w/w) *doped in OLED host (mCP:OXD7 80:20).*

Figure S15 Time-resolved photoluminescence spectra of PtL_2^1 *neat film.*

Figure S16 Time-resolved photoluminescence spectra of $PtL_2^2 0.005\%$ doped PS film.

Figure S17 Time-resolved photoluminescence spectra of PtL_2^2 5% (w/w) doped in OLED host (mCP:OXD7 80:20).

*Figure S18 Time-resolved photoluminescence spectra of PtL*²₂ 20% (w/w) *doped in OLED host (mCP:OXD7 80:20).*

Figure S19 Time-resolved photoluminescence spectra of PtL²₂ 30% (w/w) doped in OLED host (mCP:OXD7 80:20).

Figure S20 Time-resolved photoluminescence spectra of PtL^2_2 neat film.

Figure S21 Excitation spectra of thin films of PtL_2^1 . The % represents the weight concentration of the emitter in mCP:OXD7 (80:20) host. The wavelength at which the emission was registered is given in the figure legend.

Figure S22 Excitation spectra of thin films of PtL^2_2 . The % represents the weight concentration of the emitter in mCP:OXD7 (80:20) host. The wavelength at which the emission was registered is given in the figure legend.

4. OLED devices

Figure S23 Luminance-voltage and current density-voltage characteristics of devices 1-3 and 7.

Figure S24 Luminance-voltage and current density-voltage characteristics of devices 4-6.

Figure S25 Current efficiency-current density characteristics of devices 1-3 and 7.

Figure S26 Current efficiency-current density characteristics of devices 4-6.

Figure S27 Luminance-voltage and current density-voltage characteristics of devices 8-10.

Figure S28 Luminance-voltage and current density-voltage characteristics of devices 11-13.

Figure S29 Current efficiency-current density characteristics of devices 8-10.

Figure S30 Current efficiency-current density characteristics of devices 11-13.

Figure S31 External quantum efficiency (EQE)-current density characteristics of devices 8-10.

Figure S32 External quantum efficiency (EQE)-current density characteristics of devices 11-13.

Figure S33 Electroluminescence spectra of devices 8-10.

Figure S34 Electroluminescence spectra of devices 11-13.

Table S2 Summary of OLED device characteristics.
--

Device	Dopant	Dopant conc. %	Ф _{PL} in film	V _{ON} @ 10 cd m	EQE, %: max / at 1 mA cm ⁻² /	CE, cd A ⁻¹ : max / at 1 mA cm ⁻² /	L _{max} , cd m ⁻²	CIE (x,y) at L _{max}
				2 / V	at 10 mA m ⁻²	at 10 mA m ⁻²		
Dev 1	PtL ¹ ₂	30	0.55 ±0.06	12.0	9.6 / 7.6 / 9.7	27.2 / 22.5 / 26.5	19800	0.50, 0.49
Dev 2	PtL ¹ ₂	20	0.61 ±0.06	11.9	12.5 / 10.1 / 12.3	38.2 / 30.9 / 37.9	28700	0.47, 0.51
Dev 3	PtL ¹ ₂	5	0.63 ±0.06	11.1	10.4 / 9.2 / 9.7	34.3 / 30.9 / 32.4	26100	0.41, 0.55
Dev 4	PtL ² ₂	30	0.58 ±0.06	9.5	8.8 / 5.2 / 8.3	19.2 / 11.2 / 18.1	13400	0.52, 0.47
Dev 5	PtL ² ₂	20	0.57 ±0.06	10.1	11.4 / 6.2 / 11.4	30.8 / 20.3 / 30.3	21000	0.47, 0.51
Dev 6	PtL ² ₂	5	0.85 ±0.09	10.4	10.9 / 10.4 / 9.7	35.8 / 34.1 / 30.3	26900	0.35, 0.58
Dev 7 [*]	PtL ¹ ₂	30*	-	3.8	15.0 / 15.0 / 14.5	42.7 / 41.8 / 40.3	38800	0.45, 0.51
Dev 8	PtL ¹ ₂	30	-	8.4	6.8 / 2.1 / 6.1	21.4 / 10.4 / 20.2	25900	0.45, 0.53
Dev 9	PtL ¹ ₂	20	-	7.3	7.3 / 4.7 / 6.9	24.1 / 11.2 / 22.8	30300	0.42, 0.55
Dev 10	PtL ¹ ₂	5	-	7.8	5.6 / - / 5.5	17.6 / - / 17.0	12000	0.29, 0.54
Dev 11	PtL ² ₂	30	-	7.7	5.1 / 2.6 / 4.8	12.6 / 6.1 / 11.8	15300	0.49, 0.49
Dev 12	PtL ² ₂	20	-	8.3	6.5 / - / 5.4	18.2 / - / 15.0	21800	0.45, 0.52
Dev 13	PtL ² ₂	5	-	7.9	6.5 / 2.6 / 6.3	21.4 / 7.7 / 21.4	8300	0.30, 0.57

* This device was prepared by vacuum thermal evaporation. The 30% concentration relates to the 30% evaporation rate contribution of dopant during co-evaporation of the emissive layer.

Device structures were as follows (overpage):

Dev 1-6: ITO | HIL 1.3N (45 nm) | mCP:OXD7 (80:20) co x% dopant (60±5 nm) | TPBi (50 nm) | LiF (0.8 nm) | Al (100 nm)

Dev 7: ITO | NPB (35 nm) | TSBPA (10 nm) | mCP (5 nm) | mCP co 30% Triaz 1 (20 nm) | TPBi (50 nm) | LiF (0.8 nm) | Al (100 nm)

Dev 8-13: ITO | HIL 1.3N (45 nm) | mCP:PO-T2T (70:30) co x% dopant (70±5 nm) | PO-T2T (50 nm) | LiF (0.8 nm) | Al (100 nm)

DFT calculations

The calculations were carried out using the Gaussian 09 suite of programs[¶] to predict energyminimized structures of the singlet ground states. The LANL2DZ basis set was used for all atoms, and the B3LYP functional was selected. Harmonic vibrational wavenumber calculations were performed to confirm that the structures obtained correspond to minima on the potential energy surface. Time-dependent calcualtions were carried out on the optimised structures to probe the orbital parentage of the lowest-energy spin-allowed transitions.

Table S3 TD-DFT B3LYP/LANL2DZ excitation energies for the five lowest-lying singlet states of PtL_2^1 with their corresponding oscillator strengths, transitions and contributions.

Excited	Energy	Wavelength	Oscillator	Transition	Contribution
state	(eV)	(nm)	strength		
S1	2.53	489.18	0.030	$HOMO \rightarrow LUMO$	0.697
				$HOMO-1 \rightarrow LUMO$	0.101
S2	2.89	429.39	0.000	$HOMO-1 \rightarrow LUMO$	0.704
S3	3.09	400.83	0.000	$HOMO \rightarrow LUMO+1$	0.695
S4	3.45	359.38	0.128	$HOMO-1 \rightarrow LUMO+1$	0.697
S5	3.97	346.89	0.051	$HOMO \rightarrow LUMO+2$	0.688

[¶] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Montgomery, {Jr.}, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, 2009, Gaussian 09.

Table S4 TD-DFT B3LYP/LANL2DZ excitation energies for the five lowest-lying singlet states of PtL^2_2 with their corresponding oscillator strengths, transitions and contributions.

Excited	Energy	Wavelength	Oscillator	Transition	Contribution
state	(eV)	(nm)	strength		
S1	2.49	498.81	0.0453	HOMO → LUMO	0.699
S2	2.86	434.19	0.000	HOMO−1 → LUMO	0.695
				$HOMO \rightarrow LUMO+1$	0.115
S3	2.95	419.68	0.000	$HOMO \rightarrow LUMO+1$	0.690
S4	3.32	372.94	0.098	$HOMO-1 \rightarrow LUMO+1$	0.701
S5	3.48	355.36	0.374	$HOMO-2 \rightarrow LUMO$	0.554

Figure S35 The HOMO–2 orbital of PtL^2_2 , which features in the $S_0 \rightarrow S_5$ transition (principal contribution is HOMO–2 \rightarrow LUMO).