Supporting Information

A Strategy for Achieving Efficient Electroluminescence with Reduced Efficiency Roll-off: Enhancement of Hot Excitons Spin Mixing and Restriction of Internal Conversion by Twisted Structure Regulation from Anthracene Derivative

Yue Yu ${ }^{a, b}$, Lin Ma ${ }^{* a}$, Zhao Feng ${ }^{b}$, Boao Liu ${ }^{b}$, Huixin Zhou ${ }^{a}$, Hanlin Qin ${ }^{a}$, Huan Li ${ }^{a}$, Jiangluqi Song ${ }^{a}$, Guijiang Zhou*b and Zhaoxin Wu*c,d
${ }^{a}$ Dr. Y. Yu, Dr. L. Ma, Dr. H. Zhou, Dr. H. Qin, Dr. H. Li, Dr. J. Song
School of Physics and Optoelectronic Engineering
Xidian University
Xi'an 710071, P. R. China
E-mail: linma@xidian.edu.cn

${ }^{b}$ Dr. Y. Yu, Dr. Z. Feng, Dr. B. Liu, Prof. G. Zhou
Department of Chemistry, School of Science
Xi'an Jiaotong University
Xi'an 710049, P. R. China
E-mail: zhougj@mail.xjtu.edu.cn

${ }^{c}$ Prof. Z. Wu
Key Laboratory of Photonics Technology for Information
Department of Electronic Science and Technology, School of Electronic and Information Engineering
Xi'an Jiaotong University
Xi'an 710049, P. R. China
E-mail: zhaoxinwu@mail.xjtu.edu.cn
${ }^{d}$ Prof. Z. Wu
Collaborative Innovation Center of Extreme Optics
Shanxi University
Taiyuan 030006, P. R. China

Keywords: (electroluminescent fluorescent, charge transfer, exciton utilization, hot exciton, efficiency roll-off)

Scheme 1 Molecular structures and the synthetic routes to An9-Po, An9-MePo, An9DMePo and An2-Po.

Synthesis of 1-Bromo-4-(diphenyl-phosphinoyl)-benzene: Under the N_{2} atmosphere, 1-Bromo-4-iodo-benzene $(2.32 \mathrm{~g}, 8.20 \mathrm{mmol})$ were dissolved in anhydrous tetrahydrofuran (50 mL). The solution was cooled to $\square 78{ }^{\circ} \mathrm{C}$ and added $n-\mathrm{BuLi}$ ($3.96 \mathrm{~mL}, ~ 9.90 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane). After stirred for 45 min , chlorodiphenylphosphine ($1.49 \mathrm{~mL}, 8.20 \mathrm{mmol}$) was added to the mixture and reacted at room temperature overnight. Dilute hydochloric acid was added to the mixture to adujst pH value to $c a .7 .0$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was re-dissolved in tetrahydrofuran $(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}_{2}(10$ $\mathrm{mL}, 30 \%$) was added to the solution dropwise. After react at rt. for 2 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Then, the residue was purified by column chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(6: 1 \mathrm{v} / \mathrm{v}$) as the eluent.

Yellow solid was obtained ($2.25 \mathrm{~g}, 76.8 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.65-7.62 (m, 3H), 7.61-7.56 (m, 3H), 7.55-7.49 (m, 4H), 7.46-7.42 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 133.72,133.61,132.66,132.35,132.25,132.23,132.13$, $132.03,131.95,131.83,131.61,131.32,128.76,128.64,127.26,127.23 .{ }^{31} \mathrm{P}$ NMR (161.9 MHz, CDCl3, ס): 28.97. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrPO}: \mathrm{C}, 60.50$; H, 3.92. Found: C, 60.47; H, 3.88.

Synthesis of 4-Bromo-3-methyl-phenyl)-diphenyl-phosphane: Under the N_{2} atmosphere, 1-Bromo-4-iodo-2-methyl-benzene ($2.44 \mathrm{~g}, 8.20 \mathrm{mmol}$) were dissolved in anhydrous tetrahydrofuran (50 mL). The solution was cooled to $\square 78^{\circ} \mathrm{C}$ and added n-BuLi ($3.96 \mathrm{~mL}, 9.90 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane). After stirred for 45 min , chlorodiphenylphosphine ($1.49 \mathrm{~mL}, 8.20 \mathrm{mmol}$) was added to the mixture and reacted at room temperature overnight. Dilute hydochloric acid was added to the mixture to adujst pH value to $c a .7 .0$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was re-dissolved in tetrahydrofuran $(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}_{2}(10$ $\mathrm{mL}, 30 \%$) was added to the solution dropwise. After react at rt . for 2 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Then, the residue was purified by column chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(6: 1 \mathrm{v} / \mathrm{v})$ as the eluent. White solid was obtained ($2.04 \mathrm{~g}, 67.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.67-$ $7.59(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 138.74, 138.62, 134.11, 134.01, 132.60, $132.55,132.43,132.10,132.07,132.03,131.93,131.57,131.14,130.71,130.60$, 129.62, 128.62, 128.50, 22.95. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 28.66. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrPO}: \mathrm{C}, 61.46$; H, 4.31. Found: C, 61.39; H, 4.26.

Synthesis of 2-Bromo-5-(diphenyl-phosphinoyl)-1,3-dimethyl-benzene: Under the N_{2} atmosphere, 2-Bromo-5-iodo-1,3-dimethyl-benzene ($2.56 \mathrm{~g}, 8.20 \mathrm{mmol}$) were dissolved in anhydrous tetrahydrofuran (50 mL). The solution was cooled to $\square 78^{\circ} \mathrm{C}$
and added $n-\mathrm{BuLi}(3.96 \mathrm{~mL}, 9.90 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane $)$. After stirred for 45 min , chlorodiphenylphosphine ($1.49 \mathrm{~mL}, 8.20 \mathrm{mmol}$) was added to the mixture and reacted at room temperature overnight. Dilute hydochloric acid was added to the mixture to adujst pH value to $c a .7 .0$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was re-dissolved in tetrahydrofuran $(50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}_{2}(10$ $\mathrm{mL}, 30 \%$) was added to the solution dropwise. After react at rt . for 2 h , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Then, the residue was purified by column chromatography over silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(6: 1 \mathrm{v} / \mathrm{v})$ as the eluent. White solid was obtained ($2.27 \mathrm{~g}, 71.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.67-$ $7.62(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 139.04, 138.91, 132.86, 132.36, 132.10, $132.06,132.04,132.00,131.82,131.36,131.26,130.28,128.63,128.51,24.03 .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 28.38$. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrPO}: \mathrm{C}, 62.34 ; \mathrm{H}, 4.68$. Found: C, 62.29; H, 4.65.

Synthesis of 9-[4-(Diphenyl-phosphinoyl)-phenyl]-anthracene (An9-Po): Under the N_{2} atmosphere, 4-Bromo-3-methyl-phenyl)-diphenyl-phosphane (1.79g, 5 mmol), 9Anthraceneboronic acid $(1.22 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}, 0.15 \mathrm{mmol})$ were added to a flask containing THF (50 mL) and aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 25$ mL). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ and stirred for 24 h under a nitrogen atmosphere. After it was cooled to room temperature, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the organic phase was combined and dried with anhydrous MgSO_{4}. Then, the solvent was removed in vacuum and the resultant residue was purified by column chromatography using a proper petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent system to give the target product (White solid, $1.86 \mathrm{~g}, 81.9 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.81(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.60(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 7 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 142.95,132.87,132.28,132.22,132.18,132.12,132.09,132.01$,
$131.91,131.83,131.57,131.52,131.45,131.24,131.21,131.00,129.83,128.69$, 128.57, 128.42, 127.16, 126.29, 125.71, 125.20. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 29.49. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{PO}$: C, 84.58 ; H, 5.07. Found: C, 84.49; H, 5.05.

Synthesis of 9-[4-(Diphenyl-phosphinoyl)-2-methyl-phenyl]-anthracene (An9-
MePo): Under the N_{2} atmosphere, 4-Bromo-3-methyl-phenyl)-diphenyl-phosphane (1.86g, 5 mmol$), 9$-Anthraceneboronic acid ($1.22 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}$, 0.15 mmol) were added to a flask containing THF (50 mL) and aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 25 \mathrm{~mL})$. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ and stirred for 24 h under a nitrogen atmosphere. After it was cooled to room temperature, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the organic phase was combined and dried with anhydrous MgSO_{4}. Then, the solvent was removed in vacuum and the resultant residue was purified by column chromatography using a proper petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent system to give the target product (White solid, $1.85 \mathrm{~g}, 78.9 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.81(\mathrm{~m}$, $5 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 142.51,142.48,138.79,138.67,134.78$, 133.61, 133.52, $133.02,132.97,132.51,132.21,132.11,132.00,131.29,131.25,129.54,129.50$, $129.43,128.63,128.55,128.52,128.40,126.91,125.96,125.81,125.23,19.77 .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right):$ 29.53. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{PO}: \mathrm{C}, 84.62 ; \mathrm{H}, 5.34$. Found: C, 84.53; H, 5.39.

Synthesis of 9-[4-(Diphenyl-phosphinoyl)-2,6-dimethyl-phenyl]-anthracene (An9-
DMePo): Under the N_{2} atmosphere, 2-Bromo-5-(diphenyl-phosphinoyl)-1,3-dimethyl-benzene ($1.93 \mathrm{~g}, 5 \mathrm{mmol}$), 9-Anthraceneboronic acid ($1.22 \mathrm{~g}, 5.5 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}, 0.15 \mathrm{mmol})$ were added to a flask containing THF $(50 \mathrm{~mL})$ and aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 25 \mathrm{~mL})$. The reaction mixture was heated at 110 ${ }^{\circ} \mathrm{C}$ and stirred for 24 h under a nitrogen atmosphere. After it was cooled to room temperature, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the organic phase was combined and dried with anhydrous MgSO_{4}. Then, the solvent was removed in vacuum and the resultant residue was purified by column chromatography using a
proper petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent system to give the target product (White solid, $1.83 \mathrm{~g}, 75.9 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.67-7.62(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.53(\mathrm{~m}$, 3H), 7.48 - 7.43 (m, 8H), $7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 138.97, 138.85, 134.44, 134.37, 132.72, 132.34, $132.31,132.01,131.98,131.92,131.68,131.28,131.18,130.15,130.02,128.57$, 128.44, 128.09, 127.97, 127.87, 127.82, 127.75, 23.97. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): 28.76. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{27}$ PO: C, 84.65; H, 5.60. Found: C, 84.69; H, 5.67.

Synthesis of 2-[4-(Diphenyl-phosphinoyl)-phenyl]-anthracene (An2-Po): Under the N_{2} atmosphere, 4-Bromo-3-methyl-phenyl)-diphenyl-phosphane (1.79g, 5 mmol), 2Anthraceneboronic acid $(1.22 \mathrm{~g}, 5.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.17 \mathrm{~g}, 0.15 \mathrm{mmol})$ were added to a flask containing THF (50 mL) and aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}, 25$ mL). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ and stirred for 24 h under a nitrogen atmosphere. After it was cooled to room temperature, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All the organic phase was combined and dried with anhydrous MgSO_{4}. Then, the solvent was removed in vacuum and the resultant residue was purified by column chromatography using a proper petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ eluent system to give the target product (White solid, $1.90 \mathrm{~g}, 83.9 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~m}$, 2H), $7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-$ $7.72(\mathrm{~m}, 5 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 136.44,132.77,132.67,132.18,132.14,132.08,132.00,131.98,131.61,130.99$, 129.11, 128.62, 128.50, 128.22, 128.18, 127.40, 127.27, 126.90, 126.47, 126.12, 125.69, 124.91. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 29.05. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{PO}: \mathrm{C}$, 84.58; H, 5.07. Found: C, 84.52; H, 5.10.

The solvatochromic Lippert-Mataga model

We used the Lippert-Mataga equation, which describes the interactions between the solvent and the dipole moment of solute to estimate the dipole moments of S_{1} state:
$h c\left(v_{a}-v_{f}\right)=h c\left(v_{a}^{0}-v_{f}^{0}\right)-\frac{2\left(\mu_{e}-\mu_{g}\right)^{2}}{a_{0}{ }^{3}} f(\varepsilon, n)$
Take differential on both sides of the above equation, we got
$\mu_{e}=\mu_{g}+\left\{\frac{h c a_{0}{ }^{3}}{2} \cdot\left[\frac{d\left(v_{a}-v_{f}\right)}{d f(\varepsilon, n)}\right\}^{1 / 2}\right.$
where h is the Plank constant, c is the light speed in vacuum, $f(\varepsilon, n)$ is the orientational polarizability of solvents, $v_{a}^{0}-v_{f}^{0}$ is the Stokes shifts when f is zero, μ_{e} and μ_{g} are dipole moments of excited-state and ground-state, respectively; a_{0} is the solvent Onsager cavity radius, derived from the Avogadro number (N), molecular weight (M), and density $\left(d=1.0 \mathrm{~g} / \mathrm{cm}^{3}\right) ; \varepsilon$ is the solvent dielectric constant and n is the solvent refractive index; μ_{g} of An9-Po, An9-MePo, An9DmePo and An2-Po could be estimated from density-functional-theory (DFT) calculation at the level of B3LYP/6-31g(d,p) from Gaussian09 package, which gave μ_{g} of $4.1 \mathrm{D}, 4.5 \mathrm{D}, 4.3 \mathrm{D}$ and 4.3 D , respectively. $f(\varepsilon, n)$ and a_{0} can be calculated as follows:
$f(\varepsilon, n)=\frac{\varepsilon-1}{2 \varepsilon+1}-\frac{n^{2}-1}{2 n^{2}+1}, \quad a_{0}=\left(\frac{3 M}{4 N \pi d}\right)^{1 / 3}$
The detailed data are listed in Table S1. For An9-Po, An9-MePo, An9-DmePo and An2-Po, the μ_{e} was estimated to be 6.5 D (slope value of $\approx 646, \mathrm{R}=0.80$), 6.9 D (slope value of $\approx 628, \mathrm{R}=0.64$), 6.2 D (slope value of $\approx 373, \mathrm{R}=0.55$) and 8.9 D (slope value of $\approx 2283, \mathrm{R}=0.85$), respectively.

Table S1. The data about absorption and emission peak positions of An9-Po, An9MePo, An9-DmePo and An2-Po in different solvents.

Solvents	ε	n	$f(\varepsilon, n)$	An9-Po			An9-MePo			An9-DmePo			An2-Po		
				λ_{a} (n	λ_{f} (n	$\begin{aligned} & v_{a}-v_{f} \\ & \left(\mathrm{~cm}^{-}\right. \end{aligned}$	$\begin{gathered} \lambda_{a} \\ (\mathrm{n} \end{gathered}$	$\begin{aligned} & \lambda_{f} \\ & \text { (n } \end{aligned}$	$\begin{aligned} & v_{a}-v_{f} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{gathered} \lambda_{a} \\ (\mathrm{n} \end{gathered}$	λ_{f} (n	$\begin{aligned} & v_{a}-v_{f} \\ & \left(\mathrm{~cm}^{-}\right. \end{aligned}$	$\begin{aligned} & \lambda_{a} \\ & \text { (n } \end{aligned}$	λ_{f} (n	$\begin{aligned} & v_{a}-v_{f} \\ & \left(\mathrm{~cm}^{-}\right. \end{aligned}$

				m)	m)	${ }^{1}$)	m)	m)		m)	m)	${ }^{1}$)	m)	m)	${ }^{1}$)
Hexane	1.9	$\begin{aligned} & 1.37 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 2 \end{aligned}$	$\begin{array}{\|l} 38 \\ 5 \end{array}$	$\begin{aligned} & 42 \\ & 2 \end{aligned}$	2277	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{aligned} & 41 \\ & 3 \end{aligned}$	1761	$\begin{aligned} & 24 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 2 \end{aligned}$	$\begin{aligned} & 1722 \\ & 2 \end{aligned}$	$\begin{array}{\|l} 38 \\ 9 \end{array}$	$\begin{aligned} & 42 \\ & 2 \end{aligned}$	2010
Toluene	$\begin{aligned} & 2.3 \\ & 8 \end{aligned}$	$\begin{aligned} & 1.49 \\ & 4 \end{aligned}$	0.014	$\begin{array}{\|l} 38 \\ 5 \end{array}$	$\begin{aligned} & 42 \\ & 5 \end{aligned}$	2445	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{aligned} & 41 \\ & 8 \end{aligned}$	2051	$\begin{aligned} & 24 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 6 \end{aligned}$	$\begin{aligned} & 1745 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 38 \\ 9 \end{array}$	$\begin{aligned} & 43 \\ & 1 \end{aligned}$	2505
Triethylamin e	$\begin{aligned} & 2.4 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1 \end{aligned}$	0.048	$\begin{array}{\|l} 38 \\ 5 \end{array}$	$\begin{array}{\|l\|} 43 \\ 3 \end{array}$	2879	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{array}{\|l} 41 \\ 5 \end{array}$	1878	$\begin{aligned} & 24 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 5 \end{aligned}$	$\begin{aligned} & 1739 \\ & 8 \end{aligned}$	$\begin{array}{\|l} 38 \\ 9 \end{array}$	$\begin{aligned} & 43 \\ & 9 \end{aligned}$	2928
Butyl ether	$\begin{array}{\|l\|} 3.0 \\ 8 \end{array}$	$\begin{aligned} & 1.39 \\ & 9 \end{aligned}$	0.096	$\begin{array}{\|l} 38 \\ 5 \end{array}$	$\begin{aligned} & 42 \\ & 2 \end{aligned}$	2277	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{aligned} & 41 \\ & 4 \end{aligned}$	1819	$\begin{array}{\|l} 24 \\ 1 \end{array}$	$\begin{aligned} & 41 \\ & 4 \end{aligned}$	$\begin{aligned} & 1733 \\ & 9 \end{aligned}$	$\begin{array}{\|l} 38 \\ 9 \end{array}$	$\begin{aligned} & 42 \\ & 5 \end{aligned}$	2178
Isopropyl ether	$\begin{array}{\|l} 3.8 \\ 8 \end{array}$	$\begin{aligned} & 1.36 \\ & 8 \end{aligned}$	0.145	$\begin{array}{\|l} 38 \\ 5 \end{array}$	$\begin{aligned} & 42 \\ & 3 \end{aligned}$	2333	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{aligned} & 41 \\ & 4 \end{aligned}$	1819	$\begin{aligned} & 24 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 3 \end{aligned}$	1728	$\begin{aligned} & 38 \\ & 9 \end{aligned}$	$\begin{aligned} & 42 \\ & 7 \end{aligned}$	2288
Ethyl ether	$\begin{aligned} & 4.3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 2 \end{aligned}$	0.167	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{aligned} & 42 \\ & 3 \end{aligned}$	2266	$\begin{aligned} & 38 \\ & 5 \end{aligned}$	$\begin{aligned} & 41 \\ & 5 \end{aligned}$	1878	$\begin{aligned} & 24 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 3 \end{aligned}$	1728	$\begin{array}{\|l} 39 \\ 0 \end{array}$	$\begin{aligned} & 42 \\ & 9 \end{aligned}$	2331
Ethyl acetate	$\begin{aligned} & 6.0 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 2 \end{aligned}$	0.200	$\begin{array}{\|l\|} \hline 38 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & 42 \\ & 4 \end{aligned}$	2322	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 41 \\ 5 \end{array}$	1811	$\begin{array}{\|l\|} 24 \\ 1 \end{array}$	$\begin{aligned} & 41 \\ & 4 \end{aligned}$	$\begin{array}{\|l} 1733 \\ 9 \end{array}$	$\begin{array}{\|l} 39 \\ 0 \end{array}$	$\begin{aligned} & 43 \\ & 0 \end{aligned}$	2385
Tetrahydrofu ran	$\begin{array}{\|l} 7.5 \\ 8 \end{array}$	$\begin{aligned} & 1.40 \\ & 7 \end{aligned}$	0.210	$\begin{array}{\|l} 38 \\ 6 \end{array}$	$\begin{aligned} & 42 \\ & 4 \end{aligned}$	2322	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 41 \\ 7 \end{array}$	1926	24 1	$\begin{aligned} & 41 \\ & 5 \end{aligned}$	$\begin{array}{\|l} 1739 \\ 8 \end{array}$	$\begin{array}{\|l} 39 \\ 0 \end{array}$	$\begin{array}{\|l} 43 \\ 3 \end{array}$	2546
dichlorometh ane	$\begin{array}{\|l} 8.9 \\ 3 \end{array}$	$\begin{aligned} & 1.42 \\ & 4 \end{aligned}$	0.217	$\begin{array}{\|l} 38 \\ 6 \end{array}$	$\begin{aligned} & 42 \\ & 5 \end{aligned}$	2378	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{aligned} & 41 \\ & 8 \end{aligned}$	1984	24 1	$\begin{array}{\|l} 41 \\ 6 \end{array}$	$\begin{aligned} & 1745 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 39 \\ 0 \end{array}$	43 1	2439
Acetone	$\begin{aligned} & 20 . \\ & 7 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 9 \end{aligned}$	0.284	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{aligned} & 42 \\ & 6 \end{aligned}$	2433	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 41 \\ 9 \end{array}$	2041	$\begin{array}{\|l\|} 24 \\ 1 \end{array}$	$\begin{aligned} & 41 \\ & 5 \end{aligned}$	$\begin{array}{\|l} 1739 \\ 8 \end{array}$	$\begin{array}{\|l} 39 \\ 0 \end{array}$	$\begin{array}{\|l} 43 \\ 3 \end{array}$	2546
Acetonitrile	$\begin{aligned} & 37 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 4 \end{aligned}$	0.305	$\begin{aligned} & 38 \\ & 7 \end{aligned}$	$\begin{aligned} & 42 \\ & 8 \end{aligned}$	2476	$\begin{aligned} & 38 \\ & 6 \end{aligned}$	42 1	2154	$\mid 24$ 1	$\begin{aligned} & 41 \\ & 7 \end{aligned}$	$\begin{array}{\|l} 1751 \\ 3 \end{array}$	$\begin{aligned} & 39 \\ & 0 \end{aligned}$	$\begin{aligned} & 43 \\ & 7 \end{aligned}$	2758

Fig. S1 (a) Linear correlation of orientation polarization $(f(\varepsilon, n))$ of solvent media with the Stokes shift $\left(v_{a}-v_{f}\right)$ for An9-Po. (b) Linear correlation of orientation polarization $(f(\varepsilon, n))$ of solvent media with the Stokes shift $\left(v_{a}-v_{f}\right)$ for An9-MePo. (c) Linear correlation of orientation polarization $(f(\varepsilon, n))$ of solvent media with the Stokes shift $\left(v_{a}-v_{f}\right)$ for An9-DMePo. (c) Linear correlation of orientation polarization $(f(\varepsilon, n))$ of solvent media with the Stokes shift $\left(v_{a}-v_{f}\right)$ for An2-Po.

Fig. S2 Thermogravimetric analyses of An9-Po, An9-MePo, An9-DMePo and An2Po at a heating rate of $20 \mathrm{~K} \mathrm{~min}^{-1}$.

Fig. S3 The cyclic voltammetry characteristics of An9-Po, An9-MePo, An9-DMePo and An2-Po.

Fig. S4 (a) Lifetime measurement of An9-Po, An9-MePo and An2-Po in thin film. (b) Lifetime measurement of $1 \mathrm{wt} \%$ An9-Po: C545T, An9-MePo: C545T and An2-Po: C545T in thin film.

Fig. S5 (a) The current-brightness characteristic of An9-Po, An9-MePo and An2-Po nondoped devices. (b) The current-brightness characteristic of C545T doped devices with An9-Po, An9-MePo and An2-Po as host.

Fig. S6 Electroluminescence delay of An-MePo non-doped OLED. The measurements of the transient electroluminescence were carried out using a transient spectrometer (Edinburg FL920P), and an Agilent 8114A pulse generator (100 V/2 A) was used to generate rectangular pulse voltage with a pulse width of $15 \mu \mathrm{~s}$. The forward-pulse voltage was 8 V , and the baseline was -5 V to eliminate any trapped charges.

